18.783 Elliptic Curves Fall 2025
Lecture #15 10/28/2025

15 Elliptic curves over C (part 2)
Last time we showed that every lattice L C C gives rise to an elliptic curve
Ep:y® = 4a2° — go(L)x — g3(L),
where
g2(L) := 60G4(L) := 60%: i g3(L) := 140G4(L) := 140; %
with L* := L — {0}, and we defined a map
¢: C/L — EL(C)
{wamngL
0

z€e L

Z =

where
1

o0 =s0 =5+ 3 (2o~ o)

weL*

is the Weierstrass g-function for the lattice L, and
o =23 o
(z —w)®

In this lecture we will prove two theorems. First we will prove that ® is an isomorphism
of additive groups; it is also an isomorphism of complex manifolds |3, Cor.5.1.1|, and of
complex Lie groups, but we won’t prove this right now.! Second, we will prove that every
elliptic curve E/C is isomorphic to Ey, for some lattice L; this is the Uniformization Theorem.

15.1 The isomorphism from a torus to the corresponding elliptic curve

Theorem 15.1. Let L C C be a lattice and let Ep: y* = 423 — go(L)x — g3(L) be the
corresponding elliptic curve. The map ®: C/L — Er(C) is a group isomorphism.

Proof. We first note that ®(0) = 0, so ® preserves the identity, and for all z ¢ L we have

O(—2) = (p(—2), ¢'(—2)) = (p(2), —¢/(2)) = —=®(2),

since g is even and g’ is odd, so ® is compatible with taking inverses.

Let L = [wy,ws]. There are three points of order 2 in C/L: w1/2,w2/2, and (w1 +w2)/2.
By Lemma 14.31, ¢ vanishes at these points, hence ® maps points of order 2 in C/L to
points of order 2 in Ep,(C), since the latter are the points with y-coordinate zero. Moreover,
® is injective on points of order 2, since p(z) maps each point of order 2 in C/L to a distinct
root of 4p(2)3 — ga(L)p(2) — g3(L), as shown in the proof of Lemma 14.33. The restriction
of ® to (C/L)[2] defines a bijection of (C/L)[2] — EL[2] ~ Z/2Z ® Z/2Z with ®(0) = 0,
which must be a group isomorphism.

!This is not difficult to show, but it would distract us from our immediate goal. We will see an explicit
isomorphism of complex manifolds in a few lectures when we study modular curves, and in that case we will
take the time to define precisely what this means and to prove it.
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To show that ® is surjective, let (2o, yo0) € EL(C). The elliptic function f(z) = p(2) —xo
has order 2, hence it has two zeros in the fundamental parallelogram Fy, by Theorem 14.18.
Neither of these zeros occurs at z = 0, since f has a pole at 0. So let zg # 0 be a zero of f(z)
in Fo. Then p(z0) = xo, which implies ®(zp) = (zo, £yo) and therefore (zg,y0) = P(£20);
thus @ is surjective.

We now show that ® is injective. Let z1,29 € Fy and suppose that ®(z1) = $(z9).
If 229 € L then z; is a 2-torsion element and we have already shown that & restricts
to a bijection on (C/L)[2], so we must have z; = 2. We now assume 2z; ¢ L, which
implies ©/(z1) # 0. As argued above, the roots of f(z) = p(z) — p(21) in Fy are *z,
thus 29 = +21 mod L. We also have ©/(z1) = ¢'(22), and this forces 2o = z; mod L, since
O'(—21) = —¢'(21) # ¢'(21) because p'(21) # 0.

It remains only to show that ®(z; + 2z2) = ®(21) + ®(22). So let 21,20 € Fp; we may
assume that z1, 29,21 + 29 € L since the case where either z; or 29 lies in L is immediate,
and if 21 + 29 € L then 21 and 25 are inverses modulo L, a case treated above.

The points P, = ®(z1) and P, = ®(z2) are affine points in E7(C), and the line ¢ between
them cannot be vertical because P; and P are not inverses (since z; and zy are not). So
let y = mx + b be an equation for this line, and let P3 be the third point where the line
intersects the curve Er. Then P;+ Po+ P3 = 0, by the definition of the group law on Er,(C).

Now consider the function £(z) = —g'(z) + mgp(z) +b. It is an elliptic function of order 3
with a triple pole at 0, so it has three zeros in the fundamental parallelogram Fg, two of
which are z; and 2. Let z3 be the third zero in Fy. The point ®(z3) lies on both the line ¢
and the elliptic curve E(C), hence it must lie in { P;, P5, P3}; moreover, we have a bijection
from {z1, 22, 23} to {®(z1), P(22), P(23)} = {P1, P2, P3}, and this bijection must send z3 to
P5 if Pj is distinct from P; and P. If P3 coincides with exactly one of P; or Ps, say Py,
then ¢(z) has a double zero at z; and we must have z3 = z1; and if P, = P» = P3 then
clearly zq1 = z9 = z3. Thus in every case we must have P3 = ®(z3).

We have P + P> + P3 = 0, so it suffices to show 21 + 29 + z3 € L, since this implies

@(zl + 2’2) = @(—23) = —(13(2:3) =—-P3=P +P = (I)(Zl) + (I)(Zg).

Let F, be a fundamental parallelogram for L whose boundary does not contain any zeros
or poles of £(z) and replace z1, 22, 23 by equivalent points in F, if necessary.
Applying Theorem 14.17 to g(z) = z and f(z) = ¢(z) yields

1
2mi Jor, {(2)

dz:Zordw(ﬁ)w:z1+22+z3—3-0:21+zg+Z3, (1)
wEFa

where the boundary 0F, of F, is oriented counter-clockwise.
Let us now evaluate the integral in (1); to ease the notation, define f(z) := ¢'(2)/4(z),
which we note is an elliptic function (hence periodic with respect to L). We then have

/a]ff(z) dz = /az?(u;)dz + /az?(uzl:;rg; + /z}fi)dz + /gf(z)dz

+w1 a+wi+w2 a+w2

a+twi o+twsg @ @
= d d d d
/azf(z) z+/a(z+w1)f(z) z+/cy(fwjrw2)f(z) z+/aifw(zz) z
a+ws o4
wr [ f(z)dz+wa [ f(z)dz. (2)

a—+wi
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Note that we have used the periodicity of f(z) to replace f(z + w;) by f(z), and to cancel
integrals in opposite directions along lines that are equivalent modulo L.
For any closed (not necessarily simple) curve C' and a point zg ¢ C, the quantity
1 dz
2m Jo 2 — 20

is the winding number of C about zp, and it is an integer (it counts the number of times the
curve C “winds around” the point zp); see [1, Lem. 4.2.1] or [4, Lem. B.1.3|.
The function ¢(« 4 twy) parametrizes a closed curve C; from £(a) to (o + wa) = (),
as t ranges from 0 to 1. The winding number of C; about the point 0 is the integer
1 dz 1 10+ tw) 1 et (2) 1 [tz

_ _1 T2) ap— dz = — dz. (3
DT omi Jo =0 2mi Jy Uattwn) P T 2w Jy 0(z) 7T 2mi f(2)dz (3)

Similarly, the function ¢(c 4 twy) parameterizes a closed curve Cy from ¢(«) to ¢(a + wy),
and we obtain the integer
1 dz 1 [V (a4 twr) 1 [oter f(2) 1 [oter

= — =— —————wdt = — dz = — dz. (4
T o Jo, 2= 0 2mi Jo o+ twr) ! omi J, =) 2mi af(z) = ()

Plugging (3), and (4) into (2), and applying (1), we see that
214 29 4+ 23 = ciw1 — cowo € L,

as desired. O

15.2 The j-invariant of a lattice

Definition 15.2. The j-invariant of a lattice L is defined by

o(L)* _ L oog g2(L)*
A(L) 92(L)? — 27g3(L)?
Recall that A(L) # 0, by Lemma 14.33, so j(L) is always defined.
The elliptic curve Ep: y? = 423 — go(L)x — g3(L) is isomorphic to the elliptic curve
y? = 23 + Az + B, where go(L) = —4A and g3(L) = —4B. Thus
g2(L)? (—44)3 443

=172 =1728————— = j(EL).
g2(L)3 — 27g3(L)? ’ 8(—4A)3 — 27(—4B)? 2w I E)

J(L) = 1728

§(L) = 1728

Thus the j-invariant of a lattice L is the same as the j-invariant of the corresponding elliptic
curve Ep. We now define the discriminant of an elliptic curve so that it agrees with the
discriminant of the corresponding lattice.

Definition 15.3. The discriminant of an elliptic curve E: y? = 23 + Az + B is
A(E) = —16(44% 4 27B?).

This definition applies to any elliptic curve E/k defined by a short Weierstrass equation,
whether k£ = C or not, but for the moment we continue to focus on elliptic curves over C.

Recall from Theorem 13.14 that elliptic curves E/k and E’/k are isomorphic over k if
and only if j(E) = j(E’). Thus over an algebraically closed field like C, the j-invariant
characterizes elliptic curves up to isomorphism. We now define an analogous notion of
isomorphism for lattices.
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Definition 15.4. Lattices L and L’ are said to be homothetic if L' = AL for some \ € C*.
Theorem 15.5. Two lattices L and L' are homothetic if and only if j(L) = j(L').
Proof. Suppose L and L' are homothetic, with L' = AL. Then

g2(L)) = 60 Z i = 60 Z (A:})4 = A g(L).

weL™ weL*

Similarly, g3(L') = A~%g3(L), and we have

A go(L))? L)3
(A~g2(L))? — 27(A~0g3(L)) 92(L)? — 27g3(L)
To show the converse, let us now assume j(L) = j(L'). Let Er and Ep/ be the corre-
sponding elliptic curves. Then j(EL) = j(E/). We may write

J(L)) = 1728

Ep:y? =2+ Az + B,

with —4A = go(L) and —4B = g3(L), and similarly for Ep/, with —4A’ = gy(L') and
—4B' = g3(L'). By Theorem 13.13, there is a u € C* such that A’ = y*A and B’ = B,
and if we let A = 1/pu, then go(L') = A"%g2(L) = go(AL) and g3(L') = A %g3(L) = g3(\L),
as above. We now show that this implies L' = \L.

Recall from Theorem 14.29 that the Weierstrass g-function satisfies

¢'(2)? = 4p(2)° — g20(2) — gs.

Differentiating both sides yields
20/ (2)p" (2) = 120(2)*¢/(2) — g2¢/(2)
92
o'(2) = bp()? — 2. (5)
By Theorem 14.28, the Laurent series for p(z; L) at z =0 is

1 o0 [ee)
=2 Z 2n+1) G2n+gz —2 + Z 22"

where a1 = ¢g2/20 and as = g3/28.
Comparing coefficients for the 22" term in (5), we find that for n > 2 we have

n—1
(2n+2)(2n+ 1)ap+1 =6 (Z Aflp_i + 2an+1> ,
k=1

and therefore

It = on £ 2)( 2n+1 —12 Za”“a” -

This allows us to compute a,4+1 from aq,...,a,—1, for all n > 2. It follows that go(L) and
93(L) uniquely determine the function (z) = p(z; L) (and therefore the lattice L where
©(z) has poles), since p(z) is uniquely determined by its Laurent series expansion about 0.

Now consider L' and AL, where we have g2(L’) = g2(AL) and g3(L') = g3(AL). It follows
that p(z; L) = p(z; AL) and L' = AL, as desired. O
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Corollary 15.6. Two lattices L and L' are homothetic if and only if the corresponding
elliptic curves Er, and Er: are isomorphic.

Thus homothety classes of lattices correspond to isomorphism classes of elliptic curves
over C, and both are classified by the j-invariant. Recall from Theorem 13.12 that every
complex number is the j-invariant of an elliptic curve E/C. To prove the Uniformization
Theorem we just need to show that the same is true of lattices.

15.3 The j-function

Every lattice [wy,ws] is homothetic to a lattice of the form [1,7], with 7 in the upper half
plane H = {z € C : imz > 0}; we may take 7 = 4ws/wy with the sign chosen so that
im7 > 0. This leads to the following definition of the j-function.
Definition 15.7. The j-function j: H — C is defined by j(7) = j([1,7]). We similarly
define 92(7—) = 92([17T])7 93(7—) = 93([177—])7 and A(T) = A([la T])

Note that for any 7 € H, both —1/7 and 7+ 1 lie in H (the maps 7+ 1/7 and 7 — —7

both swap the upper and lower half-planes; their composition preserves them).

Theorem 15.8. The j-function is holomorphic on H, and satisfies j(—1/7) = j(7) and
J(r+1) = j(7).

Proof. From the definition of j(7) = j([1,7]) we have
3

92(7)" _ 1798 g2(1)?

j(r)=1728 A (7P — 27ga()E

The series defining

1 1
= 060 . ——— d = 140 e
g2(7) mZZ GRSy an g3(7) mZZ CETTE
(m,n)#(0,0 (m,n)#(0,0)

converge absolutely for any fixed 7 € ‘H, by Lemma 14.22, and they converge uniformly over
T in any compact subset of H. The proof of this last fact is straight-forward but slightly
technical; see |2, Thm. 1.15] for the details. It follows that g2(7) and g3(7) are holomorphic
on H, and therefore A(T) = go(7)? — 27g3(7)? is also holomorphic on H. Since A(7) is
nonzero for all 7 € H, by Lemma 14.33, the j-function j(7) is holomorphic on H as well.
The lattices [1,7] and [1,—1/7] = —1/7[1, 7] are homothetic, and the lattices [1,7 + 1]
and [1, 7] are equal; thus j(—1/7) = j(7) and j(7 + 1) = j(7), by Theorem 15.5. O

15.4 The modular group

We now consider the modular group

T = SLy(Z) = {(‘CL Z) ca,bc,d €7, ad—bc:l}.

As proved in Problem Set 8, the group I' acts on H via linear fractional transformations

a b at +b
T = ——
c d ct+d’
and it is generated by the matrices S = ({ ') and T = ({}). This implies that the
j-function is invariant under the action of the modular group; in fact, more is true.
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Lemma 15.9. For any 7,7 € H we have j(7) = j(7') if and only if 7/ = ~7 for some
vyel.
Proof. We have j(S7) = j(—1/7) = j(7) and j(T'7) = j(t + 1) = j(7), by Theorem 15.8. It
follows that if 7/ = 7 then j(7’) = j(7), since S and T generate T'.

To prove the converse, let us suppose that j(7) = j(7'). Then by Theorem 15.5, the

lattices [1,7] and [1,7] are homothetic So [1,7'] = A[1,7], for some A € C*. There thus
exist integers a, b, ¢, and d such that

7" = alT + bA
1 =cAt+dX

From the second equation, we see that A = ﬁ Substituting this into the first, we have

b
S YT, where v = <Z b> € 72*2.

cT+d d
Now [1,7'] = A[1, 7] implies im 7" = |A|?im 7, since 7, 7 € H and fundamental parallelograms
for [1,7'] = A[1, 7] must have the same area. But we also have

_ _ 2
or +d = = (dety)|A]” im T,

ar+b\ im((am +b)(cT+d))  (ad—bc)imT
N ler + d|? ler + d|?

im 7’ = im(y7) = im <

and therefore dety = 1 and v € SLo(Z). O

Lemma 15.9 implies that when studying the j-function it suffices to study its behavior on
I'-equivalence classes of H, that is, the orbits of H under the action of I'. We thus consider
the quotient of # modulo I'-equivalence, which we denote by H/T".? The actions of v and
— are identical, so taking the quotient by PSLo(Z) = SLa(Z)/{£1} yields the same result,
but for the sake of clarity we will stick with I' = SLa(Z).

We now wish to determine a fundamental domain for 7 /I, a set of unique representatives
in H for each I'-equivalence class. For this purpose we will use the set

F={reH:re(r) € [-1/2,1/2) and |7| > 1, such that |7| > 1 if re(7) > 0}.

Lemma 15.10. The set F is a fundamental domain for H/T .

Proof. We need to show that for every 7 € H, there is a unique 7’ € F such that 7/ = 1,
for some v € I'. We first prove existence. Let us fix 7 € H. For any v = (‘Cl 3) € I' we have

aT+b> _ im((ar 4+ b)(cT +d))  (ad — bc)imT im 7

ct+d - - (6)

m(y7) = ”n( et + df? [er + dJ? o7 + dJ?

Let c¢r + d be a shortest vector in the lattice [1,7]. Then ¢ and d must be relatively prime,
and we can pick integers a and b so that ad — bc = 1. The matrix vy = (‘é 2) then
maximizes the value of im(y7) over v € T. Let us now choose v = T%y,, where k is chosen
so that re(y7) € [l/2,1/2), and note that im(y7) = im(yp7) remains maximal. We must

have |y7| > 1, since otherwise im(Svy7) > im(y7), contradicting the maximality of im(y7).

2Some authors write this quotient as T\ to indicate that the action is on the left.
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—i _172 0 1/2 i
Figure 1: Fundamental domain F for H/T", with i = ¢™/2 and p = €27%/3,

Finally, if 7/ = y7 ¢ F, then we must have |[y7| = 1 and re(y7) > 0, in which case we
replace v by S« so that 7/ =~7 € F.

It remains to show that 7’ is unique. This is equivalent to showing that any two I'-
equivalent points in F must coincide. So let 71 and 75 = 171 be two elements of F, with
7 = (2%), and assume im 7y < im7,. By (6), we must have |cry + d|* < 1, thus

1> |er —|—d]2 = (cr1 +d)(eT1 +d) = 02|7'1|2 +d? +2cdrer > 02|71|2 +d? - led] > 1,

where the last inequality follows from |71| > 1 and the fact that ¢ and d cannot both be zero
(since dety = 1). Thus |em + d| = 1, which implies im 75 = im 7. We also have |c|, |d| < 1,
and by replacing 1 by —v; if necessary, we may assume that ¢ > 0. This leaves 3 cases:

1. ¢=0: then |[d|=1and a =d. So 7o =71 £ b, but [rems —re7(| <1, 80 70 = 77.

2. ¢=1,d=0: then b= —1 and |r1| = 1. So 71 is on the unit circle and 75 = a — 1/77.
Eithera=0and m =7 =4, ora=—1and o, =71 = p.

3. c=1,|d| =1: then |7y +d| =1, s0 71 = p, and im 75 = im 71 = v/3/2 implies 75 = p.
In every case we have 7 = 79 as desired. O
Theorem 15.11. The restriction of the j-function to F defines a bijection from F to C.

Proof. Injectivity follows immediately from Lemmas 15.9 and 15.10. It remains to prove
surjectivity. We have

1
ga(r) = 60 Y it~ 22 +Z (m+nr)

nmeZ n,meZL
The second sum tends to 0 as im 7 — oco. Thus we have
d 47t
i =1 =120 =120 — = —
i 92(7) =120 Z m () =12055 = =
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where ((s) is the Riemann zeta function. Similarly,

70 876
I =2 =980~ =
i 93(7) = 2806(6) = 280 57 = o7

4 4\° 8 &\
imlTlglooA(T) = <37T ) 27 (277r > 0.

(this explains the coefficients 60 and 140 in the definitions of g, and g3; they are the smallest
pair of integers that ensure this limit is 0). Since A(7) is the denominator of j(7), the
quantity j(7) = 1728¢g2(7)3/A(7) is unbounded as im 7 — oc.

In particular, the j-function is non-constant, and by Theorem 15.8 it is holomorphic on H.
The open mapping theorem implies that j(#) is an open subset of C; see |4, Thm. 3.4.4].

We claim that j(#) is also a closed subset of C. Let j(71),j(72),... be an arbitrary
convergent sequence in j(#H), converging to w € C. The j-function is I'-invariant, by
Lemma 15.9, so we may assume the 7, all lie in F. The sequence im 7q,im 7o, ... must
be bounded, say by B, since j(1) — oo as im7T — oo, but the sequence j(m1),j(72),...
converges; it follows that the 7, all lie in the compact set

Thus

Q={r:rer €[-1/2,1/2],imT € [1/2, B]}.

There is thus a subsequence of the 7, that converges to some 7 € 2 C ‘H. The j-function is
holomorphic, hence continuous, so j(7) = w. It follows that the open set j(#) contains all
its limit points and is therefore closed.

The fact that the non-empty set j(#) C C is both open and closed implies that j(H) = C,
since C is connected. It follows that j(F) = C, since every element of H is -equivalent to
an element of F (Lemma 15.10) and the j-function is I'-invariant (Lemma 15.9). O

Corollary 15.12 (Uniformization Theorem). For every elliptic curve E/C there exists a
lattice L such that E = E7,.

Proof. Given E/C, pick 7 € H so that j(7) = j(F) and let L' = [1,7]. We have

J(E) =j(r) =j(L') = j(Ep),
so F is isomorphic to Ey/, by Theorem 13.13, where the isomorphism is given by the map
(z,y) — (p?z, p3y) for some p € C*. If we now let L = iL’, then F = Fy. O
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