18.783 Elliptic Curves Fall 2025
Lecture #14 10/23/2025

14 Elliptic curves over C (part I)

We now consider elliptic curves over the complex numbers. Our first goal is to prove the Uni-
formization Theorem, which establishes an explicit correspondence between elliptic curves

over C and tori C/L defined by lattices L in C:

1. Every lattice L can be used to define an elliptic curve E/C.
2. Every elliptic curve E//C arises from a lattice L.

3. If E/C is the elliptic curve corresponding to the lattice L, then there is an isomorphism
o
C/L — E(C)

that is both analytic (as a mapping of complex manifolds) and algebraic: addition of
points in E(C) corresponds to addition in C modulo the lattice L.

To make the correspondence explicit, we need to specify the map ®. This map is param-
eterized by elliptic functions, specifically the Weierstrass g-function and its derivative. We
will begin by studying general properties of elliptic functions in §14.1 and Eisenstein series
in §14.3, then specialize to the Weierstrass g-function in §14.4 and construct the map @ in
§14.5. Our presentation generally follows that in |2, Ch. 3, §10], but we will fill in some
more details for the benefit of those who have not taken a course in complex analysis.

Once we have fleshed out this correspondence, we will have a powerful method to con-
struct elliptic curves with desired properties. The arithmetic properties of lattices over C
are usually easier to understand than those of the corresponding elliptic curve. In particular,
by choosing an appropriate lattice, we can construct an elliptic curve with a given endomor-
phism ring. In the case of elliptic curves over C, the endomorphism ring must either be Z
or an order @ in an imaginary quadratic field (a fact we will prove). The order O may be
viewed as a lattice, and we will see that the elliptic curve corresponding to the torus C/O
has endomorphism ring O.

This has important implications for elliptic curves over finite fields. If we choose a suit-
able prime p, we can reduce an elliptic curve E/C with complex multiplication to an elliptic
curve E,/IF, with the same endomorphism ring @. The endomorphism ring determines,
in particular, the trace of the Frobenius endomorphism 7g, (up to a sign), which in turn
determines #E,(F,) = p4+1—tr(ng,). This allows us to construct elliptic curves over finite
fields that have a prescribed number of rational points, using what is known as the CM
method. As we will see, this has many practical applications, including cryptography and a
faster version of elliptic curve primality proving.

14.1 Elliptic functions

We begin with the definition of a lattice in the complex plane.

Definition 14.1. A lattice L = [wi,w2] in C is an additive subgroup wiZ + wsZ of C
generated by complex numbers w; and wsy that are linearly independent over R.

Example 14.2. Let 7 be the root of a monic quadratic equation z? + bx + ¢ with integer
coefficients and negative discriminant. Then the lattice [1, 7] is the additive group of an
imaginary quadratic order O = Z[7]. Conversely, if O is an imaginary quadratic order Z[7],
then the additive group of O is the lattice [1,7].
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If we take the quotient of the complex plane C modulo a lattice L, we get a torus C/L.
Note that this quotient makes sense not just as a quotient of abelian groups, but also as
a quotient of topological spaces (where C has its usual Euclidean topology and L has the
discrete topology); the torus C/L is a compact topological group.

Definition 14.3. A fundamental parallelogram for L = [w,ws] is any set of the form
Fo ={a+tiws +taws : 0 < 1,2 < 1}.

for some a € C. We can identify the points in any F, with the points of C/L.
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Figure 1: A lattice [w1,ws] with a fundamental parallelogram shaded.

In order to define the correspondence between complex tori and elliptic curves over C,
we need to define the notion of an elliptic function on C. As complex analysis is not an
official prerequisite for this course, we will take a moment to define the terminology we need
and recall some elementary results that can be found in standard textbooks such as [1, 4, 6].

Definition 14.4. A function f: Q — C defined on an open neighborhood 2 of a point
zp € C is said to be holomorphic at zg if the derivative

() — £(z0)

Z—20 zZ— 20

exists.! We say that f is holomorphic on an open set € if it is holomorphic at every zo € €.
Functions that are holomorphic on all of C are simply said to be holomorphic or entire.

Examples of holomorphic functions include polynomials and convergent power series.
Functions that admit a power series expansion with a positive radius of convergence about
a point zg are said to be analytic at zy. Remarkably, any function that is holomorphic
at zo is also analytic at zp (see [1, Thm. 5.3] or [6, Thm. 2.4.4|), so the terms analytic and
holomorphic may be used interchangeably (modern usage favors holomorphic).

!The limit must take the same value no matter how the complex number z approaches zp; this makes
differentiability a much stronger condition on a complex function than it is on a real function.
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Definition 14.5. Let k be a positive integer. A complex function f(z) has a zero of order k
at zg if an equation of the form

f(z) = (z = 20)"q9(2)
holds in some open neighborhood of zy in which g(z) is holomorphic and g(zp) # 0. We say

that f(z) has a pole of order k at zp if the function 1/f(z) has a zero of order k at z5. A
pole or zero of order 1 is called a simple pole or a simple zero.

Definition 14.6. A complex function f is meromorphic on an open set €2 if it is holomorphic
at every point on € except for a discrete set of poles.?

Definition 14.7. For any nonzero complex function f(z) that is meromorphic on an open
neighborhood of a point zg € C we define

n if f has a zero of order n at zg,
ord,, (f) := ¢ —n if f has a pole of order n at z,

0 otherwise.

For any open set (2 C C, the set of complex functions that are meromorphic on 2 forms a
field C(€2) that we view as an extension of C (the constant functions). For each fixed 2 € €,
we then have a discrete valuation ord,,: C(Q)* — Z, which has the following properties:

1. ord,,(fg) = ord,, (f) + ord,,(g) for all f,g € C(Q)*;
2. ord,, (f + ¢)) > min(ord,, (f),ord,,(g)) for all f,g € C(2)*.

We note that the second inequality is in fact an equality whenever ord,,(f) # ord,,(g). It
is customary to extend ord,, to all of C(€2) by defining ord,,(0) := oo, with addition and
comparisons in Z U {oo} defined in the obvious way.

Definition 14.8. An elliptic function for a lattice L is a complex function f(z) such that
1. f is meromorphic on C.
2. f is periodic with respect to L; this means that f(z +w) = f(2) for all w € L.3

The fact that an elliptic function is periodic with respect to L means that it can also be
viewed as a function on C/L. Note that if f is an elliptic function for L then it is also
an elliptic function for every sub-lattice of L. Sums, differences, products, and quotients
of elliptic functions for a lattice L are also elliptic functions for L; thus the set of elliptic
functions for a fixed lattice L form a field that we denote C(L); note that constant functions
are elliptic functions for every lattice L.

Definition 14.9. The order of an elliptic function is the number of poles it has in any
fundamental parallelogram, where each pole is counted with multiplicity equal to its order
(this is a finite number because the poles in a fundamental parallelogram are a discrete
subset of its closure, which is compact).

As a general rule, whenever we count the poles or zeros of a meromorphic function, we
always count them with multiplicity.

Remark 14.10. The elliptic functions of order zero are precisely the constant functions.
This follows from Liouville’s theorem (see Theorem 14.30 below), since a holomorphic elliptic
function is necessarily bounded (as a continuous function it must achieve a maximum value
on any compact set, including the closure of a fundamental parallelogram), hence constant.

2This means that each pole lies in an open subset of Q that contains no other poles.
SIF L = [w1,w2] the function f is also said to be doubly periodic, with periods w1 and wo.
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14.2 Contour integrals and the residue formula

In order to count poles and zeros of meromorphic functions (and elliptic functions in partic-
ular), we need a few standard tools from complex analysis that we briefly recall here. Those
who are familiar with this material can skip ahead to Theorem 14.18, which uses Cauchy’s
argument principle to deduce that an elliptic function has the same number of zeros as poles
in any fundamental parallelogram.

Definition 14.11. A smooth curve in C is a continuously differentiable function
7v: [a,0] = C,

where [a, b] is a closed interval in R. A piecewise smooth curve v: [a,b] — C is defined by a
finite sequence of n smooth curves v;: [a;, b;] — C with a9 = a, a;+1 = b;, and b, = b. We
will simply use the term curve to refer to a piecewise smooth curve.* A curve is simple if
its restriction to the open interval (a,b) is injective, and it is closed if y(a) = v(b).

For simple closed curves vy the Jordan curve theorem (see [1, §4.2 Ex. 3] or [6, Appendix B,
Thm. 2.1]) gives a well-defined notion of interior and exterior, as well as a notion of positive
and negative orientation. Loosely speaking, we that a simple closed curve is positively
oriented if the interior is on the left as we travel along the curve (if  is a circle, this means
counter-clockwise). The notion of orientation can be made completely precise using winding
numbers, but this is overkill for our purposes here; the simple closed curves we will use
(circles and parallelograms) all have obvious interiors and orientation.

Definition 14.12. For a smooth curve 7: [a,b] — C and a complex function f(z) defined
on an open set containing v the contour integral of f along ~ is defined by

b
2)dz = "(t)dt.
L £(2) / Fr) ()t

This definition extends to piecewise smooth curves in the obvious way (sum the contour
integrals on each smooth piece).

Theorem 14.13. Let Q be an open set containing a curve 7: [a,b] — C, and let F(z) be a
holomorphic function on Q and let f(z) = F'(z). Then

/ f(2)dz = F(3(b)) — F(x(a)).
:

Proof. If v is smooth then

[rea= | Faon = [ (§Fe0))d=Fom) - Fow),

The piecewise smooth case follows by taking summing over smooth pieces. O

It is a non-trivial fact that if f(z) is holomorphic on a simply connected open set {2 then
there exists a holomorphic function® F(z) for which f(z) = F’(z) (this is obvious locally,

“More generally one can define rectifiable curves that are defined by continuous (but not necessarily
differentiable) functions and have finite length, but we will not need these.
®The function F(z) is called a primitive of f(z).
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since in a neighborhood of each zy € 2 there is a power series expansion of f(z) about zy
that we can integrate term by term, but we want a single F'(z) that works for all zy € Q);
see [1, §4.1 Thm. 4] or [6, §2 Thm. 2.1| for a proof in the case that € is a disc. An important
consequence of this fact is Cauchy’s theorem.

Theorem 14.14 (Cauchy’s theorem). Let f be a function that is holomorphic on an open
set containing a closed curve v and its interior. Then

/ f(z)dz = 0.
gl
Proof. See |6, Appendix B Thm. 2.9]. O

A corollary of this theorem is that the countour integral of a holomorphic function
depends only on the end points (y(a),7(b)) of the curve v, not the path taken from y(a) to
v(b).

We now want to consider countour integrals of functions that are meromorphic but not
necessarily holomorphic. Note that a function f(z) that is meromorphic on an open set €2
has a Laurent series expansion

f(Z) = Z an(z - ZO)n

about any point zp € 2. Here ng = ord,,(f) can be any integer (positive or negative), and
we define a,, = 0 for all n < ng.

Definition 14.15. The residue at zy of a function f(z) =
morphic on an open neighborhood of zg is

n :
n>ng @n(2 — 20)" that is mero-

res;, (f) :=a_1.

If f is holomorphic at zp then res,,(f) = 0. Even if f has a pole at z it is still possible to
have res;,(f) = 0 when the order of the pole is greater than 1, but if f has a simple pole
at zo then res,,(f) must be nonzero. This definition may look strange at first glance, but it
is motivated by the following theorem.

Theorem 14.16 (Residue formula). Let v be a simple closed curve with positive orientation
and let f(z) be a function that is meromorphic on an open set containing v and its interior
with no poles on 7. Let z1,...,zn be the poles of f(z) that lie in the interior of 7y. Then

N

/ f(z)dz = QWineszk (f)-
g

k=1

Proof. Let us first suppose that v is a circle and that f(z) has a single pole at z; inside 7. We
now consider a keyhole contour 7 that approximates v but whose interior does not contain
21, as shown below. The function f(z) is holomorphic on an open set that contains 4 and
its interior, but not z1; thus fi f(2)dz = 0, by Cauchy’s theorem.
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As the distance § between the horizontal segments [; and ls goes to zero, the sum
fl1 f(2)dz) + fl2 f(2)dz approaches zero while f,y, f(2)dz approaches f,y f(2)dz. In the limit

we have
Af(Z)dZ =0= Lf(z)dz - /c1 F(2)dz,

where ¢; is a positively oriented circle with the same radius as the arc v; (which is oriented
in the opposite direction; this explains the minus sign in the equation above). Thus

f/f(z)dz:/(:lf(z)dz.

If f(2) = > ,5n, an(z — 21)" is the Laurent series for f(z) about z1, then

-1

/Cl f(z)dz = /c1 Z an(Z—Zo)n-l-Zan(z—zo)” ds.

n=ngo n>0

The infinite sum on the right is holomorphic in an open neighborhood of zy that we can
assume contains ci, since we can make the radius of ¢; as small as we wish, thus the integral
of this sum is zero. It thus suffices to compute the integrals fq (z — zp)"dz for negative n.
After replacing z — zg with u and dz by du we can assume ¢y is a circle about 0 parameterized
by re, where r is the radius of ¢;. For n < 0 we then have

27 ) ) 27 ) 0 if <1
/ utdu = / (Ten)n(ire”)dt — / ir”+1e(n+1)ndt — { un 3
c1 0 0

2wt ifn = —1.

Thus
/f(z)dz = / f(2)dz = 2mia_; = 2mires,, (f)
g c1

as desired. The case where f(z) has N poles inside 7 is similar; we now approximate v with
a contour 4 that has N keyholes, one about each zj, each of which has an inner arc with
negative (clockwise) orientation. We then obtain

N
/f(z)dz = 27T2'Zreszk(f).
v k=1

The same argument applies when ~ is not a circle, it just requires approximating v with a
more complicated contour 4. O
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We can now use the residue formula to derive a generalization of Cauchy’s argument
principle, which is our main tool for counting the zeros and poles of a meromorphic function.

Theorem 14.17. Let v be a simple closed curve with positive orientation, let f(z) be a

function that is meromorphic on an open set ) containing v and its interior I', with no
zeros or poles on 7y, and let g(z) be a nonzero function that is holomorphic on SQ.

1 f'(z)

i“f g(Z) ( )

i Jy flz

When g(z) = 1, the RHS is the difference between the number of zeros and poles that
f(2) has in I' (counted with multiplicity), which is the usual argument principle.

dz = Z g(w)ordy, (f).

wel’

Proof. For any zy € T" that is a zero or pole of f(z), we consider the Laurent series expansions
f(z) = Z an(z — 20)", g9(z) = Z bn(z — 20)"
n>ng n>0

where ng = ord,, (f) is chosen so that a,, # 0 and we note that g(zy) = bp. Then

and we have
P otz =20 o), o =tz = 20) 7 e,

where hi(z) and ha(z) denote functions that are holomorphic on an open neighborhood
of z9. Thus g(z)f'(z)/f(z) has a simple pole with residue byng = g(z¢)ord,,(f) at each zero
or pole zg of f(z), and no other poles. The theorem follows from the residue formula.  [J

Applying Theorem 14.17 with g(z) = 1 to an elliptic function f(z) yields the following.

Theorem 14.18. Let f(z) be a nonzero elliptic function for a lattice L. When counted with
multiplicity, the number of zeros of f(z) in any fundamental parallelogram F,, for L is equal
to the number of poles of f(z) in Fy.

Proof. We first note that by the periodicity of f(z), it suffices to prove this for any particular
fundamental parallelogram F,. The zeros and poles of f(z) are discrete (note that 1/f(2)
is also a meromorphic function), so we can pick an « for which the boundary 0F, of F,
does not contain any zeros or poles of f(z). We now consider the contour integral

f'(2)
or. f(2)

where the simple closed curve 0F, is positively oriented. The fact that f(z) is periodic
with respect to L implies that f’(z) is also periodic with respect to L, as is f'(z)/f(z),
and it follows that the sum of the integral of f/(z)/f(z)dz along opposite sides of the
parallelogram 9F,, is zero, since f/(z)/f(z) takes on the same values on both sides (because
it is periodic) but the oriented curve OF, traverses them in opposite directions. We thus

dz,

have ) .
2mi Jor, f(2)
and the theorem then follows from Theorem 14.17. O
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14.3 Eisenstein series

Before giving some non-trivial examples of elliptic functions, we first define the Eisenstein
series of a lattice.

Definition 14.19. Let L be a lattice in C and let k > 2 be an integer. The weight-k
Eisenstein series for L is the sum
1
Gr(L)= ) —

weL*
where L* = L — {0}.

Remark 14.20. G (L) is a function of the lattice L, so for any fixed lattice, it is a constant.
If we consider lattices L = [1, 7] parameterized by a complex number 7 in the upper half
plane H == {z € C:imz > 0}, we can view G(L) as a function of 7:

Gulr) = Gl ) = 30 !

s (m +n7)k’
(m,n)#(0,0)

Because it comes from a function defined over a lattice, the function G(7) has some very
nice properties. In particular, we have

Gp(t+1) = Gg(1) and Gr(—1/1) = Tka(T)

for all 7 € H. Eisenstein series are the simplest example of modular forms, which we will

see later in the course.b

Remark 14.21. If k is odd then Gy (L) = 0 for any lattice L, since the terms w—lk and ﬁ
in the sum cancel (note that L is an additive group, so w € L = —w € L, and in the sum
over L*, each w is distinct from —w). Thus the only interesting Fisenstein series are those

of even weight.

Lemma 14.22. For any lattice L, the sum ) L converges absolutely for all k > 2.

weL* yk
Proof. Let 0 be the minimum distance between points in L. Consider an annulus A of inner
radius r and width g, as depicted in Figure 2.

Any two distinct lattice points in A must be separated by an arc of length at least
d/2 when measured along the inner rim of A. It follows that A contains at most 47r/§
lattice points. If we put r = n and § = 2 then the number of lattice points in the annulus
{w:n < |w|] <n+ 1} is bounded by 47n/2 = 27n. We then have

00 00
> oE S =Y <
= v o
|w|k - nk nk—1 ’
welL, |w[>1 n=1 n=1

since k > 2. The finite sum ) | is clearly bounded, thus

1
weL,0<|w|<1 Jw|k

1 1 1
ZW:ZW+ZW<M7

welL* weL weL
0<|w|<1 |w|>1
so the sum converges absolutely as claimed. O

SMany authors use Ej to denote Eisenstein series, rather than Gy, but since we are already using the
(often subscripted) symbol E for elliptic curves, we will stick with Gj.

18.783 Fall 2025, Lecture #14, Page 8



Figure 2: Annulus of radius r and width §/2.

14.4 The Weierstrass gp-function

We now give our first example of a non-constant elliptic function. It may be regarded as
the elliptic function in the sense that it can be used to construct every other non-constant
elliptic function, a fact we will prove in the next lecture (or see [5, Thm. VI.3.2]).

Definition 14.23. The Weierstrass p-function of a lattice L in C is defined by

When the lattice L is fixed or clear from context we typically just write p(z), but we should
keep in mind that this function depends on L. It is clear from the definition that p(z) has
a pole of order 2 at each point in z € L (including z = 0); we will show that it has no other
poles and is in fact holomorphic at every point not in L. To do so we rely on the following
theorem from complex analysis.

Theorem 14.24. Suppose {f,} is a sequence of functions holomorphic on an open set €,
and that {f,} converges to a function f uniformly on every compact subset of Q. Then f is
holomorphic on Q, and {f},} converges uniformly to f' on every compact subset of Q.

Proof. See |1, §5 Thm. 1] or [6, §2 Thm. 5.2-3|. O]

Theorem 14.25. The function p(z; L) is holomorphic at every zy & L.
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Proof. For each positive integer n, we define the function

1 1 1
M=zt 3 (o)
weL
0<|wl<n

Each f,(z) is clearly holomorphic at any z ¢ L, since we can differentiate the finite sum
term by term. We will show that the sequence of functions { f,,} converges uniformly to p on
all compact sets S disjoint from L. Theorem 14.24 will then imply that p(z) is holomorphic
on the open set C — L.

So let S be a compact subset of C disjoint from L. Then S is bounded and we may fix
r € Ry such that |z| < r for all z € S. For all but finitely many w € L, we have |w| > 2r.
By the triangle inequality, |w — z| + |2| > |w]|, so |w| > 27 implies the following inequalities:

1
=21 > ] — 2l > 2,
5
2w —z| < 2w|+ | — 2| < 5\00]

Thus the bound

1 L] ] 2(2w—2) 2w _10r
(z-w)? W Wiz —w)| T |wP(zlw)? P
holds for all z € S. The series ) ;. ﬁ converges, by Lemma 14.22, so
>
Z\emop

converges absolutely for all z € S, and the rate of convergence can be bounded in terms of r
and L, independent of z. It follows that {f,} converges uniformly to p on S, since for every
€ > 0 there is an N such that for all n > N we have |p(z) — fn(2)| < € for all z € S. O

With Theorem 14.25 in hand, we can now summarize the key properties of p(z).

Theorem 14.26. The function p(z) = p(z; L) and its derivative
1
/ — _2 -
P (2) > (z —w)’

satisfy the following:

(i) p(z) is a meromorphic even function whose poles consist of double poles at each z € L.

(i) ©'(2) is a meromorphic odd function whose poles consist of triple poles at each z € L.

Proof. We first note that the sequence of functions {f,} defined in the proof of Theo-
rem 14.25 consist of finite partial sums that converge uniformly to (z) on compact subsets
of C — L, and Theorem 14.24 implies that the sequence {f},} converges uniformly to ©'(z),
thus we can therefore differentiate p(z) term by term to obtain '(z) (the sum for ¢'(2)
includes w = 0 due to the leading 1/2% term in p(z)). It is clear that p(z) has a dou-
ble pole at each lattice point, and (i) then follows from Theorem 14.25 and the fact that
p(2) = p(—=2). Part (ii) is clear from the formula for ¢'(z) and the fact that the derivative
of a function that is holomorphic on an open neighborhood of a point z is also holomorphic
on that neighborhood (so ¢’(z2) is holomorphic at all z ¢ L since p(z) is). O
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Corollary 14.27. The function p(z) = p(z; L) is an elliptic function of order 2 for L, and
its derivative @' (z) is an elliptic function of order 3 for L.

Proof. We've just shown that p(z) and ¢'(z) are meromorphic. Every fundamental region
of L contains exactly one lattice point, so (z) has two poles in each fundamental region,
while ©/(z) has three. It is clear from the formula for ©/(z) that ¢’(z2) is periodic with respect
to L, we just need to show that p(z) is periodic. Let L = [wy,ws]. It suffices to show that

p(z+w;) =p(z), fori=1,2.
Now ¢'(2) is periodic, so ¢'(z + w;) = ¢'(2). Integrating then gives

p(z+wi) —p(z) = c.

for some constant ¢; and for all z ¢ L. To find ¢;, plug in z = —w; /2. We have
p(wi/2) — p(—wi/2) = ¢,
but p(z) is an even function, so ¢; = 0 and p(z + w;) = p(2) as desired. O

The study of elliptic functions dates back to Gauss, who discovered them as solutions
to elliptic integrals (they were later rediscovered by Abel and Jacobi). We will show that
©(z) satisfies a differential equation of the form ¢'(2)? = f(p(2)), where f(z) is a cubic
polynomial over C. Notice that if one views (p(z), ¢'(2)) as a pair (z,y), this is exactly the
equation of an elliptic curve!l This explains our interest in p(z).

To derive the differential equation satisfied by the Weierstrass p-function, we first need
to compute its Laurent series.

Theorem 14.28. The Laurent series expansion of p(z) = p(z; L) at z = 0 is given by
1 = 2n
7+Z (2n +1)Gany2(L) 2",
n=1

where G (L) denotes the Eisenstein series of weight k.

Proof. For all |z| < 1 we have the power series expansion

[e.9]

=(l4z+2”+--)"=> (n+1)a"
n=0

1
(1-=)?

Applying this to x = Z with [z| < 1 (which we can assume holds for all w € L* provided we
keep z close to 0),

1 11 1 > > (n+1)z"
e (e D R DY LD I
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Summing over w and changing the order of summation (via absolute convergence) gives

=2+ Y oo H

weL*
(n+1)z
) +w;*; wont2
1
- +Z”+1 Zw+2

wel*

1 n
==t > (n+1)Gnya(L)z

n

I
N

1
) (27’L + 1)G2n+2(L)Z2n.

M8

_|_

I
—

n

In the last step we used the fact that p(z) is an even function, so the coefficients of the odd
terms are 0 and we can sum over 2n rather than n. O
14.5 Lattices define elliptic curves
The key link between p(z) and elliptic curves is given by the following differential equation.
Theorem 14.29. The function p(z) = p(z; L) satisfies the differential equation

p'(2)* = 4p(2)° = g2(L)p(2) — g3(L), (1)
where ga(L) := 60G4(L) and g3(L) = 140G¢(L).
Proof. We may apply Theorem 14.28 to compute the first few terms of the Laurent series

expansions for p(z) and ©'(z) at zp = 0:

1
p(z) =5+ 3G4(L)2* + 5Ge(L)2* + - -

o (2) = —Zz + 6G4(L)z + 20Gg(L)z> + - - -
3 1 9G4( )
o(2) —26—1— 2 + 15G¢(L) +
4 24G
p,(2)2 = ; — 242() — SOGG(L) +

Now let
F(2) = ¢/(2)* = 4p(2)° + 60G4(L)p(2) + 140Gs(L).

We can compute the Laurent series expansion for f(z) at zop = 0 as a linear combination of
those computed above, and one finds that the non-positive powers of z all cancel; we thus
have f(0) =

Because p and ¢’ have poles only at points of L, the function f(z) is holomorphic on the
fundamental parallelogram Fy. The function f(z) is periodic with respect to L, since p(z)
and '(z) are, thus it is holomorphic on the entire complex plane. Note that f(z) is bounded
because all values attained by f are attained on the closure of a fundamental parallelogram,
which is a compact set. It then follows from Liouville’s Theorem (see Theorem 14.30 below)
that f is a constant function, hence identically zero. O
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Theorem 14.30 (Liouville’s Theorem). The only functions that are bounded and holomor-
phic on C are constant functions.

Proof. See [1, p. 122] or [6, §2 Cor. 4.5]. O

With y = ¢'(2) and = = p(z), the differential equation in (1) corresponds to the curve
y? =42 — go(L)x — g3(L). (2)

This curve can easily be put into Weierstrass form with go(L) = —4A and g3(L) = —4B,
thus every lattice L gives us an equation we can use to define an elliptic curve over C,
provided we can show that the projective curve defined by (2) is not singular. If the partial
derivatives of zy? = 423 — go(L)x2? — g3(L)2® simultaneously vanish at some point, then
there must be a projective solution to the system of equations

1222 — go(L)2% = 0, 2zy = 0, y? 4 2go(L)zz + 3g3(L)2* = 0.

We cannot have z = 0, since this would force z = y = 0, thus we assume z = 1. The second
equation then implies y = 0 and the third equation forces x = —3g3(L)/(2g2(L)). Plugging
these values into the first equation yields ga(L)3 — 27g3(L)? = 0. Thus so long as

A(L) = go(L)® — 27g3(L)?

is nonzero, equation (2) defines an elliptic curve over C.
We will prove that A(L) # 0, for every lattice L. For this we need the following lemma.

Lemma 14.31. A point z € L is a zero of ©/(z; L) if and only if 2z € L.

Proof. Suppose 2z € L for some z ¢ L. Then
O'(2) ='(z —22) = ¢/(—2) = —¢(2) =0,

where we have used the fact that p/(z) is both periodic with respect to L and an odd

function. If L = [w;,ws], then
w1 w2 Wit we

27 27 2
are the only points z € Fy that are not in L and also satisfy 2z € L. Since ¢'(z) is an
elliptic function of order 3, it has only these three zeros in Fy, by Theorem 14.18. Thus for
any z ¢ L we have ¢/(z) = 0 if only if 2z € L. O

This lemma is analogous to the fact that the points of order 2 on the elliptic curve (2)
are precisely the points (z,y) = (p(2), ©'(2)) with y = ¢'(2) = 0. The requirement that
z ¢ L simply means that (z,y) is not the point at infinity.

Remark 14.32. Having shown that the zeros of ¢/(z) correspond to 2-torsion point of C/L
you might wonder about the zeros of p(z). As shown by Eichler and Zagier, the zeros of
p(2) in the fundamental region Fy for L = [1, 7] are

1 log(5 + 2v/6) . o0 A(z)
ok <2m + 144772\/6/7 (z — T)de> ,

a fact that does not appear to have any obvious arithmetic significance.
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Lemma 14.33. For any lattice L, the discriminant A(L) is nonzero.

Proof. Let L = [w1,ws] and put

W w2 Wit wa
r = —_, ro = ?, T3 1= B .

Then r; ¢ L and 2r; € L for i = 1,2,3. So ¢/(r;) = 0 by Lemma 14.31. From (2) we see
that o(r1), p(r2), and p(rs) are the zeros of the cubic f(z) = 423 — go(L)x — g3(L). Now
the discriminant A(f) of f(x) is equal to 16A(L), thus
1
A(L) = 16 [L(o(ri) = o(r5))*,

1<j

and it suffices to show that the p(r;) are distinct.

Let gi(z) = o(2) — p(ri). Then g;(z) is an elliptic function of order 2 (its poles are
the poles of p(z)), so it has exactly 2 zeros, by Theorem 14.18. Now r; is a double zero
because g}(r;) = ¢'(r;) = 0, by Lemma 14.31. Thus g;(z) has no other zeros, and therefore

p(r;) # p(r:) for i # j. O

We have shown that every lattice L in C gives rise to an elliptic curve E/C defined by
y? = 423 — go(L)x — g3(L), and that the map

$:C/L — E(C)
z— (p(2),9'(2))

sends points on C/L to points on the elliptic curve. This is the first step in proving the
Uniformization Theorem. In the next lecture we will show that ® is a group isomorphism
and that every elliptic curve E/C arises from some lattice L.
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