18.783 Elliptic Curves Fall 2025
Lecture #13 10/21/2025

13 Ordinary and supersingular elliptic curves

Let E/k be an elliptic curve over a field of positive characteristic p. In Lecture 6 we proved
that for any nonzero integer n, the multiplication-by-n map [n] is separable if and only if n
is not divisible by p. This implies that the separable degree of the multiplication-by-p map
cannot, be p? = deg|[p], it must be either p or 1, meaning that its kernel E[p] is either cyclic
of order p or trivial. The terms ordinary and supersingular distinguish these two cases:

E is ordinary < Elp|~Z/pZ.
E is supersingular <= E[p] = {0}.

We now want to explore this distinction further, and relate it to our classification of
endomorphism algebras. In the previous lecture we showed that End’(E) := End(E) ®7 Q
has dimension 1,2, or 4 as a Q-vector space, depending on whether EndO(E) is isomorphic
to Q, an imaginary quadratic field, or a quaternion algebra.

Before we begin, let us recall some facts about isogenies proved in Lectures 5 and 6. We
assume throughout that we are working in a field k of positive characteristic p.

1. Any isogeny a can be decomposed as o = aep © ™", Where ayep is separable, and 7 is
the (purely inseparable) p-power Frobenius map 7: (z:y: z) — (2P : yP : 2P).

If @ = agep o 7" then deg, a := deg agep, deg; o := p", and dega = (deg, a)(deg; o).
We have # ker a = deg, o (so E is supersingular if and only if deg,[p] = 1).

We have deg(a o 8) = (deg «v)(deg 3), and similarly for deg, and deg;.

A

A sum of inseparable isogenies is inseparable and the sum of a separable and an
inseparable isogeny is separable (a sum of separable isogenies need not be separable).

6. The multiplication-by-n map [n] is inseparable if and only if p|n.

Recall that an isogeny « is purely inseparable when deg,a = 1, equivalently, when
ker« = {0}. Thus an elliptic curve is supersingular if and only if the multiplication-by-p
map [p| is purely inseparable. This makes it clear that the property of being ordinary or
supersingular is invariant under base change: if E/k is an elliptic curve over k and L/k is
any field extension, the separable degree of [p] on E, does not depend on L.

Warning 13.1. As noted in the previous lecture, in this course the ring End(FE) consists of
endomorphisms defined over k; if we wish to refer to endomorphisms defined over k we will
write End(E},) or refer to the geometric endomorphism ring (or algebra). Many authors use
End(E) to denote End(E}), but this distinction is important.*

The property of being ordinary or supersingular is an isogeny invariant.

Theorem 13.2. Let ¢: E1 — FEs be an isogeny of elliptic curves. Then E7 is supersingular
if and only if Es is supersingular (and Ey is ordinary if and only if Es is ordinary).

'For example, there are algorithms that apply to any elliptic curve E/F, for which End(E) is an imaginary
quadratic field, but one often finds them written under the strictly stronger assumption that F is ordinary.
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Proof. Let p1 € End(E;) and py € End(E2) denote the multiplication-by-p maps on E;
and FEs, respectively. We have ppogdp=¢ + -+ ¢ = ¢ o py, thus

p2o g =¢op
deg,(p2 0 ¢) = deg,(¢ o p1)
deg,(p2) deg,(¢) = deg,(¢) deg,(p1)
deg,(p2) = deg,(p1).

The elliptic curve Ej; is supersingular if and only if deg,(p;) = 1; the theorem follows. O

In what follows we will often want to refer to the image of E under the p-power Frobenius
isogeny (z :y : 2) + (2P : 4P : 2P) which we shall denote E(®). When E is defined over T,
we will have E®) = F and 7 will be the Frobenius endomorphism 7, but in general E®
is the elliptic curve obtained by taking an equation for E and raising each coefficient to the
pth power (it does not matter which equation we pick, the curve E®) is well-defined up to
isomorphism). We similarly define E(9) to be the image of the g-power Frobenius isogeny.
Note that [p] = 77 is purely inseparable if and only if 7 is purely inseparable (since 7 is
always purely inseparable), thus E is supersingular if and only if 7 is purely inseparable.

In order to simplify the presentation we will often assume p > 3 and use short Weierstrass
equations y? = 23 + Az + B to define our elliptic curves, but except for where explicitly
noted otherwise, all results in this lecture also hold in characteristic 2 and 3. An advantage
of using short Weierstrass equations is that it allows us to put isogenies in our standard
form (Zg;, :8&:)) y), with u,v, s,t € k[z] chosen so that u L v and s L t.

We also note that [p] = w7, where 7 is the dual of the p-power Frobenius isogeny 7. The
multiplicativity of separable degrees implies that [p] is purely inseparable if and only if 7 is
(since 7 is always purely inseparable) and deg @ = p is prime, so 7 is purely inseparable if
and only if it is inseparable. Thus F is supersingular if and only if 7 is inseparable, a fact
we will use to shorten the proofs that follow.

13.1 Ordinary/supersingular elliptic curves over finite fields

Theorem 13.3. An elliptic curve E/Fy is supersingular if and only if tr mg = 0 mod p.

Proof. If E is supersingular then [p] = 77 is purely inseparable, in which case 7 is insepa-
rable, as are " = 7" = 7 and 7 = 7. Their sum [tr 7] = mp + TE is then inseparable,
so p must divide tr g, equivalently, tr 7z = 0 mod p.

Conversely, if tr 7y = 0 mod p, then [tr mg] is inseparable, as is 7g = [tr 7g] — 7g. This
means that 7" and therefore 7 is inseparable which implies that E' is supersingular. O

Corollary 13.4. Let E/F, be an elliptic curve over a field of prime order p > 3. Then E
is supersingular if and only if trmg = 0, equivalently, if and only if #E(F,) =p+ 1.

Proof. By Hasse’s theorem, |tr7g| < 2,/p, and 2,/p < p for p > 3. O

Warning 13.5. Corollary 13.4 does not hold for p < 3; there are supersingular curves over
Fo and F3 with nonzero Frobenius traces.

This should convince you that supersingular curves over I, are rare: there are ~ 4,/p
possible values for tr g, all but one of which correspond to ordinary curves.
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Theorem 13.6. Let E be an elliptic curve over a finite field Fy and suppose g & Z. Then
End’(E) = Q(ng) ~ Q(V/D) is an imaginary quadratic field with D = (tr7g)? — 4q. This
applies in particular whenever q is prime, and also whenever E is ordinary.

Proof. The Frobenius endomorphism 7g is a root of its characteristic polynomial

2% — (trmg)z + deg p,
with discriminant D = (trmg)? — 4degnp = (trmg)? — 4q, so Q(ng) ~ Q(vVD). The
assumption 7 ¢ Z implies 7 ¢ Q, since 7 is an algebraic integer, and that tr(rg)? # 4q,
so D < 0 (by the Hasse bound) and Q(7g) is an imaginary quadratic field.

We can write any o € End’(F) as o = s¢ with s € Q and ¢ € End(E). Writing ¢ as
d(z,y) = (r1(z),r2(z)y) in standard form, we have

(907mE)(2,y) = (ri(z?), ra(29)y?) = (r1(2)?, r2(2)"y?) = (7E¢)(z,y),

thus ¢, and therefore «, commutes with 7g. Therefore & € Q(7g), by Lemma 12.18, so
End’(E) = Q(rg) as claimed. O

Corollary 13.7. Let E be an elliptic curve over Fy with g = p". Ifn is odd or E is ordinary,
then End®(E) = Q(rg) ~ Q(V/D) is an imaginary quadratic field with D = (tr7g)? — 4q.

Proof. If mp € Z then D = (trmg)? — 4degmp = 0 and 2,/g = ttrrg € Z, which is
possible only if ¢ is a square and tr 7 is a multiple of p, in which case n is even and E is
supersingular. The corollary then follows from Theorem 13.6. O

If E/F, is an ordinary elliptic curve, or more generally, whenever g ¢ Z, the subring
Zlrg] of End(E) generated by 7g is a lattice of rank 2. It follows that Z[ng] is an order
in the imaginary quadratic field K := End®(E), and is therefore contained in the maximal
order Ok (the ring of integers of K). The endomorphism ring End(E) need not equal Z[rg],
but the fact that it contains Z[ng| and is contained in Ok constrains End(E) to a finite set
of possibilities. Recall from Theorem 12.27 that every order O in K is characterized by its
conductor [Ok : O).

Theorem 13.8. Let E/F, be an elliptic curve for which End®(E) is an imaginary quadratic
field K with ring of integers Ok . Then

Z[rg] € End(F) C Ok,
and the conductor of End(E) divides [Ok : Z[rg]).
Proof. Immediate from the discussion above. O

Remark 13.9. Theorem 13.8 implies that once we know trmp (which we can compute
in polynomial time using Schoof’s algorithm), which determines End’(E) ~ K = Q(v/D)
and the orders Ok and Z[rg|, we can constrain End(E) to a finite set of possibilities
distinguished by the conductor f := [Ok : End(E)]. No polynomial-time algorithm is known
for computing the integer f, but there is a Las Vegas algorithm that has a heuristically
subexponential expected running time [1]. This makes it feasible to compute f even when ¢
is of cryptographic size (say q ~ 2259).
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Remark 13.10. Tt will often be convenient to identify End®(E) with K and End(E) with an
order O in K. But we should remember that we are actually speaking of isomorphisms. In
the case of an imaginary quadratic field, there are two distinct choices for this isomorphism.
This choice can be made canonically, see [3, Thm. I1.1.1], however this is not particularly
relevant to us, as we are going to be working in finite fields where we cannot distinguish the
square roots of D in any case. We thus accept the fact that we are making an arbitrary choice
when we fix an isomorphism of End’(E) with K by identifying mg with, say, (t + v/D)/2
(as opposed to (t — v/D)/2).

Before leaving the topic of ordinary and supersingular curves, we want to prove a re-
markable fact: while over any algebraically closed field there are always infinitely many
non-isomorphic elliptic curves, only a finite number can be supersingular. To prove this we
first introduce the j-invariant, which will play a critical role in the lectures to come.

13.2 The j-invariant of an elliptic curve

As usual, we shall assume we are working over a field k& whose characteristic is not 2 or 3,
so that we can put our elliptic curves E/k in short Weierstrass form 3? = 2% + Az + B.

Definition 13.11. The j-invariant of the elliptic curve E: y? = 23 + Az + B is

4A3
4A3 4+ 27B%
Note that the denominator of j(F) is nonzero, since it is the discriminant of the cubic
23 + Az + B, which has no repeated roots. There are two special cases worth noting: if
A =0 then j(A, B) =0, and if B = 0 then j(A, B) = 1728 (note that A and B cannot both
be zero). The j-invariant can also be defined for elliptic curves in general Weierstrass form,
which is necessary to address fields of characteristic 2 and 3; see [2, II1.1].2

The key property of the j-invariant j(F) is that it characterizes E up to isomorphism
over k. Before proving this we first note that every element of the field k is the j-invariant
of an elliptic curve defined over k.

§(E) = j(A,B) = 1728

Theorem 13.12. For every jo € k there is an elliptic curve E [k with j-invariant j(E) = jo.

Proof. We assume char(k) # 2,3; see |2, III.1.4.c| for a general proof. If jy is 0 or 1728 we
may take E to be y? = 23+ 1 or y? = 23+ 1, respectively. Otherwise, let E/k be the elliptic
curve defined by y? = 22 + Az + B where

A = 3o (1728 — jo),
B = 25(1728 — jo)>.
We claim that j(A, B) = jo. We have

4A3
(A B) =1728————
J(4, B) 4A3 {272
_ 1798 4-3353(1728 — jo)?
- 4-3353(1728 — jo)3 + 27 - 2252(1728 — jo)*
Jo
—1728— 29
jo + 1728 — jo
= jo. O

2 As noted in the errata, there is a typo on p. 42 of [2]; the equation by = a? —4ay should read by = a? —4as.
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We now give a necessary and sufficient condition for two elliptic curves to be isomorphic.
An isomorphism ¢ of elliptic curves is an invertible isogeny, equivalently, an isogeny of
degree 1 (the dual isogeny gives an inverse isomorphism, since (ﬁ(ﬁ = qggb = 1). Recall from
Lecture 5 that an isogeny between elliptic curves that are defined over k is assumed to be
defined over k (hence representable by rational functions with coefficients in k), and we say
that two elliptic curves are isogenous over an extension L of k to indicate that the isogeny
is defined over L (strictly speaking, it is an isogeny between the base changes of the elliptic
curves to L). As we saw in problem 3 of Problem Set 1, elliptic curves that are isomorphic
over k need not be isomorphic over k.

Theorem 13.13. Elliptic curves E: y?> = 23+ Az + B and E': y* = 2>+ Az + B’ defined
over k are isomorphic (over k) if and only if A" = u*A and B' = u°B, for some pu € k.

Proof. Let ¢: E — E’ be an isomorphism in standard form ¢(x,y) = (r1(z),re(z)y) with
r1,72 € k(z). Since ¢ is an isomorphism, its kernel is trivial, so r; and 9 must be polyno-
mials, by Lemma 4.27 and Corollary 4.28. Thus r1(z) = ax +b for some a,b € k with a # 0.
Substituting into the curve equation for E’, we have

ro(x)?y? = (azx +b)* + A'(ax + b) + B
ro(x)*(2® + Az + B) = (ax +b)* + A'(ax +b) + B'.

By comparing the degrees of the polynomials on both sides, we see that ry(z) must be
constant, say ro(x) = c¢. Comparing coefficients of #? shows that b = 0, and comparing
coefficients of 3 shows that ¢ = a3; thus a = (¢/a)? and ¢ = (c/a)?. If we let p = c/a € k*
then we have
/1,6(.%'3—’-141'—’—3) :ﬂ6x3+A//L2$+B/7

and it follows that A’ = y*A and B’ = u®B as claimed.

Conversely, if A’ = y*A and B’ = ;B for some p € k*, then the map ¢: E — E’
defined by ¢(x,y) = (u?z, u®y) is an isomorphism, since it is an isogeny of degree 1. O]

We are now ready to prove the theorem stated at the beginning of this section.

Theorem 13.14. Let E and E’ be elliptic curves over k. Then E and E' are isomorphic
over k if and only if j(E) = j(E'). If j(E) = j(E') and the characteristic of k is not 2
or 3 then there is a field extension K/k of degree at most 6, 4, or 2, depending on whether
J(E)=0, j(E)=1728, or j(E) # 0,1728, such that E and E' are isomorphic over K.

Remark 13.15. The first statement is true in characteristic 2 and 3 (see [2, IIL.1.4.b]),
but the second statement is not; one may need to take K/k of degree up to 12 when k has
characteristic 2 or 3.

Proof. We assume char(k) # 2, 3. Suppose E: =234+ Ax+Band F': y?> =234+ Az + B
are isomorphic over k. For some p € k* we have A’ = y*A and B’ = 5B, by Theorem 13.13.
We then have

Ay _ires A
(u*A)3 +27(uSB)2 4A3 +27B?

J(AB) = 1728 = j(A, B).

For the converse, suppose that j(A, B) = j(A’, B) = jo. If jo =0 then A= A’ =0 and
we may choose u € K*, where K /k is an extension of degree at most 6, so that B’ = u°B
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(and A" = y*A = 0). Similarly, if jo = 1728 then B = 0 and we may choose 1 € K>, where
K/k is an extension of degree at most 4, so that A’ = y*A (and B’ = u®B = 0). We may
then apply Theorem 13.13 to show that F and E’ are isomorphic over K (by extending the
field of definition of E and E’ from k to K).

We now assume jo # 0,1728. Let A” = 350(1728 —jo) and B” = 25y (1728 —70)?, as in the
proof of Theorem 13.12, so that j(A”, B") = jo. Plugging in jo = 1728 - 443 /(4A3 + 27B?),
we have

A" =3. 172847143 (1728 - 17284A3>
443 4 27B? 443§ 2TB?
4A3.271B> [ 2T3AB \°
(4A3 +27B2)2 <4A3 + 2732> ’
3

4A 4A3 2
B'=92.1728— (1728 — 1728 ———— ___
[y ey < 72811 84A3+27B2>

, 4A%.272BY  / 2735AB \°
(443 4+27B2)3 ~ \ 443 + 27B2

= 3.1728>

=2-1728

Plugging in jo = 1728 - 44”3 /(4 A" + 27B'?) yields analogous expressions for A” and B”
in terms of A" and B’. If we let

[ 2'3%AB 4A + 278"
T \aar e )\ orsae )

then A’ = u?A and B’ = u>B. We now choose 1 € K*, where K /k is an extension of degree
at most 2, so that we have g2 = u. Then A’ = p*A and B’ = ;5B and Theorem 13.13
implies that E and E’ are isomorphic over K. O

Note that while j(E) = j(A, B) always lies in the minimal field k£ containing A and B,
the converse is not necessarily true. It could be that j(A, B) lies in a proper subfield of k
(squares in A can cancel cubes in B, for example). In this case we can construct an elliptic
curve E’ that is defined over the minimal subfield of k that contains j(E) such that E’ is
isomorphic to E over k (but not necessarily over k).

13.3 Supersingular elliptic curves

Theorem 13.16. Let E be a supersingular elliptic curve over a field k of characteristic
p>0. Then j(E) lies in F2 (and possibly in |, ).

Proof. Since E is supersingular, 7 is purely inseparable, so T = freepm With deg e, = 1. We
thus have [p] = A7 = FeepT?, SO fsep iS an isomorphism EP) & R By Theorem 13.13,
2

J(E) = j(EW)) = j(A” | BY") = j(A, By = j(E)"".

Thus j(E) is fixed by the p?-power Frobenius automorphism o: x 2P of k. Tt follows that
J(E) lies in the subfield of k fixed by o, which is either IF» or I, depending on whether &
contains a quadratic extension of its prime field or not; in either case, j(£) lies in Fj2. O

Remark 13.17. Note that this theorem applies to any field k of characteristic p, not just
finite fields. Thus in any field k of positive characteristic, the number of k-isomorphism
classes of supersingular elliptic curves is finite (it certainly cannot exceed #[F,» = p?). In
fact, there are at most |{5| 4 11; see [2, Thm. V.4.1].
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Theorem 13.18. Let E be a supersingular elliptic curve over a field k of characteristic p.
Then End’(Ey,) is a quaternion algebra.

Proof. Without loss of generality we can assume k = k, so that End(E;) = End(E). Let
us suppose for the sake of contradiction that EndO(E) is not a quaternion algebra. Then
End(FE) is isomorphic to Z or an order in an imaginary quadratic field Q(v/D), where we
may assume D < 0 is squarefree. We claim there are infinitely many odd primes ¢ that are
not the degree of any ¢ € End(E). This is obvious if End(E) ~ Z, since deg[n] = n? is a
square, and if End(E) is an order in Q(v/D) and £ is the degree of ¢ then the polynomial
22 — (tr¢)x + £ has a root in End’(E) ~ Q(+v/D), which implies

tr(¢)? — 40 = v*D

for some integer v, and D must be a square modulo £. There are infinitely many primes
¢ # p for which this is not true (these are the primes that do not split in the quadratic field
Q(V'D)). Solet £1,4s, ... be an infinite sequence of odd primes different from p that are not
the degree of any ¢ € End(FE).

For each ¢; we may construct a separable isogeny ¢;: E — FE; of degree ¢; defined over
k whose kernel is a cyclic subgroup of order ¢; contained in E[¢;] using Vélu’s formulas
(see Theorem 5.15). The elliptic curves E; are all supersingular, by Theorem 13.2, and
Theorem 13.16 implies that only finitely many of them have distinct j-invariants. By The-
orem 13.14, over k we must have an isomorphism ¢: E; —» E; for some distinct ¢ and j.
Let us now consider the endomorphism ¢ := <Z7j oro¢; € End(E) of degree £;¢;. The degree
of this endomorphism is not a square, so End(E) % Z and we have End’(E) ~ Q(v/D). As
above we must have

tr(p)? — 40;4; = v*D,

for some integer v, which implies that D is a square modulo ¢; (and ¢;), a contradiction. [

When £ is a finite field, the converse of Theorem 13.18 is implied by Theorem 13.6, but
in fact the converse holds in general.

Theorem 13.19. Let E be an elliptic curve over a field k of characteristic p for which
End®(Ey) is a quaternion algebra. Then E is supersingular.

Proof. Without loss of generality, we may assume k is algebraically closed, since the property
of being supersingular, defined by E[p] = {0}, is invariant under base change, as is End®(E}).
Let «, 8 € End(FE) be nonzero endomorphisms that satisfy a5 = —fa so that af + fa =0
(such a, f exist because End(F) is a quaternion algebra).

Now suppose E is ordinary. Then E[p"] = (P) ~ Z/p"Z for some point P € E(k)
of order p™. We then have a(P) = aP and B(P) = bP for some integers a and b. If we
choose n > vy(deg o) + v,(deg f) + 1 where v, denotes the p-adic valuation (the exponent
of the largest p-power divisor), then ab+ ba = 2ab must be nonzero modulo p, since o must
send P to a point of order at least p"~?r(d%€®) and similarly for 8 (and we handled p = 2
by adding 1). But this contradicts af + fa = 0, so E cannot be ordinary. O

Corollary 13.20. Let E be an elliptic curve over a finite field F, of characteristic p. Ei-
ther E is supersingular, trmg = 0 mod p, and EndO(Eﬁq) is a quaternion algebra, or E is

ordinary, tr rg Z 0 mod p, and EndO(EE) = EndO(EFq) is an imaginary quadratic field.

Warning 13.21. If E is a supersingular elliptic curve over F,, (or any odd degree extension),
then End’(E) is an imaginary quadratic field (by Corollary 13.7), even though End’ (Eﬁp)
is a quaternion algebra.
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