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13 Ordinary and supersingular elliptic curves

Let E/k be an elliptic curve over a field of positive characteristic p. In Lecture 6 we proved
that for any nonzero integer n, the multiplication-by-n map [n] is separable if and only if n
is not divisible by p. This implies that the separable degree of the multiplication-by-p map
cannot be p2 = deg[p], it must be either p or 1, meaning that its kernel E[p] is either cyclic
of order p or trivial. The terms ordinary and supersingular distinguish these two cases:

E is ordinary ⇐⇒ E[p] ≃ Z/pZ.
E is supersingular ⇐⇒ E[p] = {0}.

We now want to explore this distinction further, and relate it to our classification of
endomorphism algebras. In the previous lecture we showed that End0(E) := End(E)⊗Z Q
has dimension 1, 2, or 4 as a Q-vector space, depending on whether End0(E) is isomorphic
to Q, an imaginary quadratic field, or a quaternion algebra.

Before we begin, let us recall some facts about isogenies proved in Lectures 5 and 6. We
assume throughout that we are working in a field k of positive characteristic p.

1. Any isogeny α can be decomposed as α = αsep ◦ πn, where αsep is separable, and π is
the (purely inseparable) p-power Frobenius map π : (x : y : z) 7→ (xp : yp : zp).

2. If α = αsep ◦ πn then degs α := degαsep, degi α := pn, and degα = (degs α)(degi α).

3. We have #kerα = degs α (so E is supersingular if and only if degs[p] = 1).

4. We have deg(α ◦ β) = (degα)(deg β), and similarly for degs and degi.

5. A sum of inseparable isogenies is inseparable and the sum of a separable and an
inseparable isogeny is separable (a sum of separable isogenies need not be separable).

6. The multiplication-by-n map [n] is inseparable if and only if p|n.

Recall that an isogeny α is purely inseparable when degs α = 1, equivalently, when
kerα = {0}. Thus an elliptic curve is supersingular if and only if the multiplication-by-p
map [p] is purely inseparable. This makes it clear that the property of being ordinary or
supersingular is invariant under base change: if E/k is an elliptic curve over k and L/k is
any field extension, the separable degree of [p] on EL does not depend on L.

Warning 13.1. As noted in the previous lecture, in this course the ring End(E) consists of
endomorphisms defined over k; if we wish to refer to endomorphisms defined over k̄ we will
write End(Ek̄) or refer to the geometric endomorphism ring (or algebra). Many authors use
End(E) to denote End(Ek̄), but this distinction is important.1

The property of being ordinary or supersingular is an isogeny invariant.

Theorem 13.2. Let ϕ : E1 → E2 be an isogeny of elliptic curves. Then E1 is supersingular
if and only if E2 is supersingular (and E1 is ordinary if and only if E2 is ordinary).

1For example, there are algorithms that apply to any elliptic curve E/Fq for which End(E) is an imaginary
quadratic field, but one often finds them written under the strictly stronger assumption that E is ordinary.
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Proof. Let p1 ∈ End(E1) and p2 ∈ End(E2) denote the multiplication-by-p maps on E1

and E2, respectively. We have p2 ◦ ϕ = ϕ+ · · ·+ ϕ = ϕ ◦ p1, thus

p2 ◦ ϕ = ϕ ◦ p1
degs(p2 ◦ ϕ) = degs(ϕ ◦ p1)

degs(p2) degs(ϕ) = degs(ϕ) degs(p1)

degs(p2) = degs(p1).

The elliptic curve Ei is supersingular if and only if degs(pi) = 1; the theorem follows.

In what follows we will often want to refer to the image of E under the p-power Frobenius
isogeny (x : y : z) 7→ (xp : yp : zp) which we shall denote E(p). When E is defined over Fp

we will have E(p) = E and π will be the Frobenius endomorphism πE , but in general E(p)

is the elliptic curve obtained by taking an equation for E and raising each coefficient to the
pth power (it does not matter which equation we pick, the curve E(p) is well-defined up to
isomorphism). We similarly define E(q) to be the image of the q-power Frobenius isogeny.
Note that [p] = ππ̂ is purely inseparable if and only if π̂ is purely inseparable (since π is
always purely inseparable), thus E is supersingular if and only if π̂ is purely inseparable.

In order to simplify the presentation we will often assume p > 3 and use short Weierstrass
equations y2 = x3 + Ax + B to define our elliptic curves, but except for where explicitly
noted otherwise, all results in this lecture also hold in characteristic 2 and 3. An advantage
of using short Weierstrass equations is that it allows us to put isogenies in our standard
form

(
u(x)
v(x) ,

s(x)
t(x) y

)
, with u, v, s, t ∈ k[x] chosen so that u ⊥ v and s ⊥ t.

We also note that [p] = ππ̂, where π̂ is the dual of the p-power Frobenius isogeny π. The
multiplicativity of separable degrees implies that [p] is purely inseparable if and only if π̂ is
(since π is always purely inseparable) and deg π̂ = p is prime, so π̂ is purely inseparable if
and only if it is inseparable. Thus E is supersingular if and only if π̂ is inseparable, a fact
we will use to shorten the proofs that follow.

13.1 Ordinary/supersingular elliptic curves over finite fields

Theorem 13.3. An elliptic curve E/Fq is supersingular if and only if trπE ≡ 0 mod p.

Proof. If E is supersingular then [p] = ππ̂ is purely inseparable, in which case π̂ is insepa-
rable, as are π̂n = π̂n = π̂E and πE = πn. Their sum [trπE ] = πE + π̂E is then inseparable,
so p must divide trπE , equivalently, trπE ≡ 0 mod p.

Conversely, if trπE ≡ 0 mod p, then [trπE ] is inseparable, as is π̂E = [trπE ]− πE . This
means that π̂n and therefore π̂ is inseparable which implies that E is supersingular.

Corollary 13.4. Let E/Fp be an elliptic curve over a field of prime order p > 3. Then E
is supersingular if and only if trπE = 0, equivalently, if and only if #E(Fp) = p+ 1.

Proof. By Hasse’s theorem, | trπE | ≤ 2
√
p, and 2

√
p < p for p > 3.

Warning 13.5. Corollary 13.4 does not hold for p ≤ 3; there are supersingular curves over
F2 and F3 with nonzero Frobenius traces.

This should convince you that supersingular curves over Fp are rare: there are ≈ 4
√
p

possible values for trπE , all but one of which correspond to ordinary curves.
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Theorem 13.6. Let E be an elliptic curve over a finite field Fq and suppose πE ̸∈ Z. Then
End0(E) = Q(πE) ≃ Q(

√
D) is an imaginary quadratic field with D = (trπE)

2 − 4q. This
applies in particular whenever q is prime, and also whenever E is ordinary.

Proof. The Frobenius endomorphism πE is a root of its characteristic polynomial

x2 − (trπE)x+ deg πE ,

with discriminant D = (trπE)
2 − 4 deg πE = (trπE)

2 − 4q, so Q(πE) ≃ Q(
√
D). The

assumption πE ̸∈ Z implies πE ̸∈ Q, since πE is an algebraic integer, and that tr(πE)2 ̸= 4q,
so D < 0 (by the Hasse bound) and Q(πE) is an imaginary quadratic field.

We can write any α ∈ End0(E) as α = sϕ with s ∈ Q and ϕ ∈ End(E). Writing ϕ as
ϕ(x, y) = (r1(x), r2(x)y) in standard form, we have

(ϕπE)(x, y) = (r1(x
q), r2(x

q)yq) = (r1(x)
q, r2(x)

qyq) = (πEϕ)(x, y),

thus ϕ, and therefore α, commutes with πE . Therefore α ∈ Q(πE), by Lemma 12.18, so
End0(E) = Q(πE) as claimed.

Corollary 13.7. Let E be an elliptic curve over Fq with q = pn. If n is odd or E is ordinary,
then End0(E) = Q(πE) ≃ Q(

√
D) is an imaginary quadratic field with D = (trπE)

2 − 4q.

Proof. If πE ∈ Z then D = (trπE)
2 − 4 deg πE = 0 and 2

√
q = ± trπE ∈ Z, which is

possible only if q is a square and trπE is a multiple of p, in which case n is even and E is
supersingular. The corollary then follows from Theorem 13.6.

If E/Fq is an ordinary elliptic curve, or more generally, whenever πE ̸∈ Z, the subring
Z[πE ] of End(E) generated by πE is a lattice of rank 2. It follows that Z[πE ] is an order
in the imaginary quadratic field K := End0(E), and is therefore contained in the maximal
order OK (the ring of integers of K). The endomorphism ring End(E) need not equal Z[πE ],
but the fact that it contains Z[πE ] and is contained in OK constrains End(E) to a finite set
of possibilities. Recall from Theorem 12.27 that every order O in K is characterized by its
conductor [OK : O].

Theorem 13.8. Let E/Fq be an elliptic curve for which End0(E) is an imaginary quadratic
field K with ring of integers OK . Then

Z[πE ] ⊆ End(E) ⊆ OK ,

and the conductor of End(E) divides [OK : Z[πE ]].

Proof. Immediate from the discussion above.

Remark 13.9. Theorem 13.8 implies that once we know trπE (which we can compute
in polynomial time using Schoof’s algorithm), which determines End0(E) ≃ K = Q(

√
D)

and the orders OK and Z[πE ], we can constrain End(E) to a finite set of possibilities
distinguished by the conductor f := [OK : End(E)]. No polynomial-time algorithm is known
for computing the integer f , but there is a Las Vegas algorithm that has a heuristically
subexponential expected running time [1]. This makes it feasible to compute f even when q
is of cryptographic size (say q ≈ 2256).
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Remark 13.10. It will often be convenient to identify End0(E) with K and End(E) with an
order O in K. But we should remember that we are actually speaking of isomorphisms. In
the case of an imaginary quadratic field, there are two distinct choices for this isomorphism.
This choice can be made canonically, see [3, Thm. II.1.1], however this is not particularly
relevant to us, as we are going to be working in finite fields where we cannot distinguish the
square roots of D in any case. We thus accept the fact that we are making an arbitrary choice
when we fix an isomorphism of End0(E) with K by identifying πE with, say, (t +

√
D)/2

(as opposed to (t−
√
D)/2).

Before leaving the topic of ordinary and supersingular curves, we want to prove a re-
markable fact: while over any algebraically closed field there are always infinitely many
non-isomorphic elliptic curves, only a finite number can be supersingular. To prove this we
first introduce the j-invariant, which will play a critical role in the lectures to come.

13.2 The j-invariant of an elliptic curve

As usual, we shall assume we are working over a field k whose characteristic is not 2 or 3,
so that we can put our elliptic curves E/k in short Weierstrass form y2 = x3 +Ax+B.

Definition 13.11. The j-invariant of the elliptic curve E : y2 = x3 +Ax+B is

j(E) = j(A,B) = 1728
4A3

4A3 + 27B2
.

Note that the denominator of j(E) is nonzero, since it is the discriminant of the cubic
x3 + Ax + B, which has no repeated roots. There are two special cases worth noting: if
A = 0 then j(A,B) = 0, and if B = 0 then j(A,B) = 1728 (note that A and B cannot both
be zero). The j-invariant can also be defined for elliptic curves in general Weierstrass form,
which is necessary to address fields of characteristic 2 and 3; see [2, III.1].2

The key property of the j-invariant j(E) is that it characterizes E up to isomorphism
over k̄. Before proving this we first note that every element of the field k is the j-invariant
of an elliptic curve defined over k.

Theorem 13.12. For every j0 ∈ k there is an elliptic curve E/k with j-invariant j(E) = j0.

Proof. We assume char(k) ̸= 2, 3; see [2, III.1.4.c] for a general proof. If j0 is 0 or 1728 we
may take E to be y2 = x3+1 or y2 = x3+x, respectively. Otherwise, let E/k be the elliptic
curve defined by y2 = x3 +Ax+B where

A = 3j0(1728− j0),

B = 2j0(1728− j0)
2.

We claim that j(A,B) = j0. We have

j(A,B) = 1728
4A3

4A3 + 27B2

= 1728
4 · 33j30(1728− j0)

3

4 · 33j30(1728− j0)3 + 27 · 22j20(1728− j0)4

= 1728
j0

j0 + 1728− j0

= j0.
2As noted in the errata, there is a typo on p. 42 of [2]; the equation b2 = a2

1−4a4 should read b2 = a2
1−4a2.
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We now give a necessary and sufficient condition for two elliptic curves to be isomorphic.
An isomorphism ϕ of elliptic curves is an invertible isogeny, equivalently, an isogeny of
degree 1 (the dual isogeny gives an inverse isomorphism, since ϕϕ̂ = ϕ̂ϕ = 1). Recall from
Lecture 5 that an isogeny between elliptic curves that are defined over k is assumed to be
defined over k (hence representable by rational functions with coefficients in k), and we say
that two elliptic curves are isogenous over an extension L of k to indicate that the isogeny
is defined over L (strictly speaking, it is an isogeny between the base changes of the elliptic
curves to L). As we saw in problem 3 of Problem Set 1, elliptic curves that are isomorphic
over k̄ need not be isomorphic over k.

Theorem 13.13. Elliptic curves E : y2 = x3+Ax+B and E′ : y2 = x3+A′x+B′ defined
over k are isomorphic (over k) if and only if A′ = µ4A and B′ = µ6B, for some µ ∈ k×.

Proof. Let ϕ : E → E′ be an isomorphism in standard form ϕ(x, y) = (r1(x), r2(x)y) with
r1, r2 ∈ k(x). Since ϕ is an isomorphism, its kernel is trivial, so r1 and r2 must be polyno-
mials, by Lemma 4.27 and Corollary 4.28. Thus r1(x) = ax+ b for some a, b ∈ k with a ̸= 0.
Substituting into the curve equation for E′, we have

r2(x)
2y2 = (ax+ b)3 +A′(ax+ b) +B′

r2(x)
2(x3 +Ax+B) = (ax+ b)3 +A′(ax+ b) +B′.

By comparing the degrees of the polynomials on both sides, we see that r2(x) must be
constant, say r2(x) = c. Comparing coefficients of x2 shows that b = 0, and comparing
coefficients of x3 shows that c2 = a3; thus a = (c/a)2 and c = (c/a)3. If we let µ = c/a ∈ k×

then we have
µ6(x3 +Ax+B) = µ6x3 +A′µ2x+B′,

and it follows that A′ = µ4A and B′ = µ6B as claimed.
Conversely, if A′ = µ4A and B′ = µ6B for some µ ∈ k∗, then the map ϕ : E → E′

defined by ϕ(x, y) = (µ2x, µ3y) is an isomorphism, since it is an isogeny of degree 1.

We are now ready to prove the theorem stated at the beginning of this section.

Theorem 13.14. Let E and E′ be elliptic curves over k. Then E and E′ are isomorphic
over k̄ if and only if j(E) = j(E′). If j(E) = j(E′) and the characteristic of k is not 2
or 3 then there is a field extension K/k of degree at most 6, 4, or 2, depending on whether
j(E) = 0, j(E) = 1728, or j(E) ̸= 0, 1728, such that E and E′ are isomorphic over K.

Remark 13.15. The first statement is true in characteristic 2 and 3 (see [2, III.1.4.b]),
but the second statement is not; one may need to take K/k of degree up to 12 when k has
characteristic 2 or 3.

Proof. We assume char(k) ̸= 2, 3. Suppose E : y2 = x3+Ax+B and E′ : y2 = x3+A′x+B′

are isomorphic over k̄. For some µ ∈ k̄∗ we have A′ = µ4A and B′ = µ6B, by Theorem 13.13.
We then have

j(A′, B′) = 1728
4(µ4A)3

4(µ4A)3 + 27(µ6B)2
= 1728

4A3

4A3 + 27B2
= j(A,B).

For the converse, suppose that j(A,B) = j(A′, B′) = j0. If j0 = 0 then A = A′ = 0 and
we may choose µ ∈ K×, where K/k is an extension of degree at most 6, so that B′ = µ6B
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(and A′ = µ4A = 0). Similarly, if j0 = 1728 then B = 0 and we may choose µ ∈ K×, where
K/k is an extension of degree at most 4, so that A′ = µ4A (and B′ = µ6B = 0). We may
then apply Theorem 13.13 to show that E and E′ are isomorphic over K (by extending the
field of definition of E and E′ from k to K).

We now assume j0 ̸= 0, 1728. Let A′′ = 3j0(1728−j0) and B′′ = 2j0(1728−j0)
2, as in the

proof of Theorem 13.12, so that j(A′′, B′′) = j0. Plugging in j0 = 1728 · 4A3/(4A3 +27B2),
we have

A′′ = 3 · 1728 4A3

4A3 + 27B2

(
1728− 1728

4A3

4A3 + 27B2

)
= 3 · 17282 4A3 · 27B2

(4A3 + 27B2)2
=

(
2735AB

4A3 + 27B2

)2

A,

B′′ = 2 · 1728 4A3

4A3 + 27B2

(
1728− 1728

4A3

4A3 + 27B2

)2

= 2 · 17283 4A3 · 272B4

(4A3 + 27B2)3
=

(
2735AB

4A3 + 27B2

)3

B.

Plugging in j0 = 1728 · 4A′3/(4A′3 + 27B′2) yields analogous expressions for A′′ and B′′

in terms of A′ and B′. If we let

u =

(
2735AB

4A3 + 27B2

)(
4A′3 + 27B′2

2735A′B′

)
,

then A′ = u2A and B′ = u3B. We now choose µ ∈ K×, where K/k is an extension of degree
at most 2, so that we have µ2 = u. Then A′ = µ4A and B′ = µ6B and Theorem 13.13
implies that E and E′ are isomorphic over K.

Note that while j(E) = j(A,B) always lies in the minimal field k containing A and B,
the converse is not necessarily true. It could be that j(A,B) lies in a proper subfield of k
(squares in A can cancel cubes in B, for example). In this case we can construct an elliptic
curve E′ that is defined over the minimal subfield of k that contains j(E) such that E′ is
isomorphic to E over k̄ (but not necessarily over k).

13.3 Supersingular elliptic curves

Theorem 13.16. Let E be a supersingular elliptic curve over a field k of characteristic
p > 0. Then j(E) lies in Fp2 (and possibly in Fp).

Proof. Since E is supersingular, π̂ is purely inseparable, so π̂ = π̂sepπ with deg π̂sep = 1. We
thus have [p] = π̂π = π̂sepπ

2, so π̂sep is an isomorphism E(p2) → E. By Theorem 13.13,

j(E) = j(E(p2)) = j(Ap2 , Bp2) = j(A,B)p
2
= j(E)p

2
.

Thus j(E) is fixed by the p2-power Frobenius automorphism σ : x 7→ xp
2 of k. It follows that

j(E) lies in the subfield of k fixed by σ, which is either Fp2 or Fp, depending on whether k
contains a quadratic extension of its prime field or not; in either case, j(E) lies in Fp2 .

Remark 13.17. Note that this theorem applies to any field k of characteristic p, not just
finite fields. Thus in any field k of positive characteristic, the number of k̄-isomorphism
classes of supersingular elliptic curves is finite (it certainly cannot exceed #Fp2 = p2). In
fact, there are at most ⌊ p

12⌋+ 11; see [2, Thm. V.4.1].
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Theorem 13.18. Let E be a supersingular elliptic curve over a field k of characteristic p.
Then End0(Ek̄) is a quaternion algebra.

Proof. Without loss of generality we can assume k = k̄, so that End(Ek̄) = End(E). Let
us suppose for the sake of contradiction that End0(E) is not a quaternion algebra. Then
End(E) is isomorphic to Z or an order in an imaginary quadratic field Q(

√
D), where we

may assume D < 0 is squarefree. We claim there are infinitely many odd primes ℓ that are
not the degree of any ϕ ∈ End(E). This is obvious if End(E) ≃ Z, since deg[n] = n2 is a
square, and if End(E) is an order in Q(

√
D) and ℓ is the degree of ϕ then the polynomial

x2 − (trϕ)x+ ℓ has a root in End0(E) ≃ Q(
√
D), which implies

tr(ϕ)2 − 4ℓ = v2D

for some integer v, and D must be a square modulo ℓ. There are infinitely many primes
ℓ ̸= p for which this is not true (these are the primes that do not split in the quadratic field
Q(

√
D)). So let ℓ1, ℓ2, . . . be an infinite sequence of odd primes different from p that are not

the degree of any ϕ ∈ End(E).
For each ℓi we may construct a separable isogeny ϕi : E → Ei of degree ℓi defined over

k̄ whose kernel is a cyclic subgroup of order ℓi contained in E[ℓi] using Vélu’s formulas
(see Theorem 5.15). The elliptic curves Ei are all supersingular, by Theorem 13.2, and
Theorem 13.16 implies that only finitely many of them have distinct j-invariants. By The-
orem 13.14, over k̄ we must have an isomorphism ι : Ei

∼−→ Ej for some distinct i and j.
Let us now consider the endomorphism ϕ := ϕ̂j ◦ ι ◦ ϕi ∈ End(E) of degree ℓiℓj . The degree
of this endomorphism is not a square, so End(E) ̸≃ Z and we have End0(E) ≃ Q(

√
D). As

above we must have
tr(ϕ)2 − 4ℓiℓj = v2D,

for some integer v, which implies that D is a square modulo ℓi (and ℓj), a contradiction.

When k is a finite field, the converse of Theorem 13.18 is implied by Theorem 13.6, but
in fact the converse holds in general.

Theorem 13.19. Let E be an elliptic curve over a field k of characteristic p for which
End0(Ek̄) is a quaternion algebra. Then E is supersingular.

Proof. Without loss of generality, we may assume k is algebraically closed, since the property
of being supersingular, defined by E[p] = {0}, is invariant under base change, as is End0(Ek̄).
Let α, β ∈ End(E) be nonzero endomorphisms that satisfy αβ = −βα so that αβ + βα = 0
(such α, β exist because End(E) is a quaternion algebra).

Now suppose E is ordinary. Then E[pn] = ⟨P ⟩ ≃ Z/pnZ for some point P ∈ E(k)
of order pn. We then have α(P ) = aP and β(P ) = bP for some integers a and b. If we
choose n > vp(degα) + vp(deg β) + 1 where vp denotes the p-adic valuation (the exponent
of the largest p-power divisor), then ab+ ba = 2ab must be nonzero modulo p, since α must
send P to a point of order at least pn−vp(degα) and similarly for β (and we handled p = 2
by adding 1). But this contradicts αβ + βα = 0, so E cannot be ordinary.

Corollary 13.20. Let E be an elliptic curve over a finite field Fq of characteristic p. Ei-
ther E is supersingular, trπE ≡ 0 mod p, and End0(EFq

) is a quaternion algebra, or E is
ordinary, trπE ̸≡ 0 mod p, and End0(EFq

) = End0(EFq) is an imaginary quadratic field.

Warning 13.21. If E is a supersingular elliptic curve over Fp (or any odd degree extension),
then End0(E) is an imaginary quadratic field (by Corollary 13.7), even though End0(EFp

)
is a quaternion algebra.
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