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12 Endomorphism algebras

The key to improving the efficiency of elliptic curve primality proving (and many other
algorithms) is the ability to directly construct an elliptic curve E/Fq with a specified number
of rational points, rather than generating curves at random until a suitable curve is found.
To do this we need to develop the theory of complex multiplication. As a first step in this
direction we introduce the endomorphism algebra of an elliptic curve and classify the possible
endomorphism algebras of an elliptic curve.

Recall from Lecture 6 that the endomorphism ring End(E) of an elliptic curve E/k
consists of the isogenies from E to itself, together with the zero morphism; addition is
defined point-wise and multiplication is composition. The ring End(E) is not necessarily
commutative, but its center (elements that commute with every other element of the ring)
always contains the multiplication-by-nmaps [n]; these form a subring of End(E) isomorphic
to Z. We will identify this subring with Z, and may write n rather than [n] without risk of
confusion: note that nϕ = ϕ+ · · ·+ϕ is the same as [n] ◦ϕ. We thus have Z ⊆ End(E), but
this inclusion is not necessarily an equality. The following facts about End(E) were proved
in Lecture 6:

• End(E) has no zero divisors;

• deg : End(E)→ Z≥0 defined by α 7→ degα is multiplicative (with deg 0 := 0);

• deg n = n2 for all n ∈ Z ⊆ End(E);

• each α ∈ End(E) has a dual α̂ ∈ End(E) with αα̂ = α̂α = degα = deg α̂, and ˆ̂α = α;

• n̂ = n for all n ∈ Z ⊆ End(E);

• α̂+ β = α̂+ β̂ and α̂β = β̂α̂ for all α, β ∈ End(E);

• trα := α+ α̂ satisfies trα = tr α̂ and tr(α+ β) = trα+ trβ;

• trα = degα+ 1− deg(α− 1) ∈ Z for all α ∈ End(E);

• α and α̂ are the roots of the characteristic equation x2 − (trα)x+ degα ∈ Z[x].

These facts imply that the map φ 7→ φ̂ is an involution of End(E).

Definition 12.1. An anti-homomorphism φ : R → S of rings is a homomorphism of their
additive groups that satisfies φ(1R) = 1S and φ(αβ) = φ(β)φ(α) for all α, β ∈ R. An
involution (or anti-involution) is an anti-homomorphism φ : R→ R that is its own inverse:
φ ◦ φ is the identity map.

A nontrivial involution of a commutative ring is an automorphism of order 2.

12.1 The endomorphism algebra of an elliptic curve

The additive group of End(E), like all abelian groups, is a Z-module. Recall that if R is a
commutative ring, an R-module M is an (additively written) abelian group that admits a
scalar multiplication by R compatible with its structure as an abelian group. This means
that for all α, β ∈M and r, s ∈ R we have

(r + s)α = rα+ sα, rα+ rβ = r(α+ β), r(sα) = (rs)α, 1α = α

(one can check these conditions also imply 0α = 0 and (−1)α = −α).
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The ring End(E) is not only a Z-module. Like all rings, it has a multiplication that is
compatible with its structure as a Z-module, making it a Z-algebra. For any commutative
ring R, an (associative unital) R-algebra A is a (not necessarily commutative) ring equipped
with a ring homomorphism R → A that maps R into the center of A.1 In our situation
the map Z → End(E) sending n to [n] is injective and we simply view Z as a subring of
End(E) that necessarily lies in its center. When we have a ring A with an involution that
is also an R-algebra, we typically require the involution to fix R, so that we may view it as
an R-algebra involution; this holds for the involution α 7→ α̂ on our Z-algebra End(E).

We now want to “upgrade” our Z-algebra End(E) to a Q-algebra (in other words, a Q-
vector space with a multiplication that is compatible with its structure as a vector space),
To do this we take the tensor product of End(E) with Q.

Definition 12.2. The endomorphism algebra of E is End0(E) := End(E)⊗Z Q.

Recall that for a commutative ring R, the tensor product A ⊗R B of two R-modules A
and B can be defined as the R-module generated by the formal symbols α⊗ β with α ∈ A
and β ∈ B, subject to the relations

(α1+α2)⊗β = α1⊗β+α2⊗β, α⊗(β1+β2) = α⊗β1+α⊗β2, rα⊗β = α⊗rβ = r(α⊗β),

for α1, α2 ∈ A, β1, β2 ∈ B and r ∈ R. The elements of A ⊗R B are finite sums of pure
tensors α⊗R β. We can use the relations above to simplify these sums. In general not every
element of A⊗R B can be reduced to a pure tensor, but in our situation this is in fact the
case (see Lemma 12.5 below). The tensor product behaves quite differently than the direct
product (for example, A × 0 = A but A ⊗R 0 = 0), but we do have a canonical R-bilinear
map φ : A×B → A⊗RB defined by (α, β) 7→ α⊗β. This map is universal in the sense that
every R-bilinear map of R-modules ψ : A×B → C can be written uniquely as a composition

A×B A⊗R B

C

←→φ

←

→ψ

←→ ∃!

This universal property can also be taken as a definition of the tensor product (without
guaranteeing its existence).

When A and B are not only R-modules but R-algebras, we give the tensor product
A⊗R B the structure of an R-algebra by defining multiplication of pure tensors

(α1 ⊗ β1)(α2 ⊗ β2) = α1α2 ⊗ β1β2

and extending linearly; this means we can compute (
∑

i αi ⊗ βi)(
∑

j αj ⊗ βj) using the
distributive law. The multiplicative identity is necessarily 1A ⊗ 1B. The R-algebras A
and B can be canonically mapped to A⊗RB via α 7→ α⊗ 1B and β 7→ 1A⊗β. These maps
need not be injective; indeed, A⊗R B may be the zero ring even when A and B are not.

Example 12.3. The tensor product Z/2Z⊗Z Z/3Z is the zero ring. To see why, note that
for any pure tensor α⊗ β we have

α⊗ β = α⊗−2β = 2α⊗−β = 0⊗−β = 0⊗ 0 = 0.
1Here we consider only associative unital algebras; one can define a more general notion of an R-algebra

that is not necessarily a ring (Lie algebras, for example).
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Example 12.4. If V is a k-vector space with basis (v1, . . . , vn) and L/k is any field extension,
then V ⊗k L is an L-vector space with basis (v1 ⊗ 1, . . . , vn ⊗ 1); multiplication by scalars
in L takes place on the RHS of each pure tensor. This implies that if V is a k-algebra of
k-dimension n, then V ⊗k L is an L-algebra of L-dimension n.

Lemma 12.5. Let R be an integral domain with fraction field B, and let A be an R-algebra.
Every element of A⊗R B can be written as a pure tensor α⊗ β.

Proof. It suffices to show that α1 ⊗ β1 + α2 ⊗ β2 can be written as α3 ⊗ β3. Let β1 = r1/s1
and β2 = r2/s2 with r1, r2, s1, s2 ∈ R. Then

α1 ⊗ β1 + α2 ⊗ β2 = α1 ⊗
r1
s1

+ α2 ⊗
r2
s2

= α1 ⊗
r1s2
s1s2

+ α2 ⊗
r2s1
s1s2

= (r1s2α1)⊗
1

s1s2
+ (r2s1α2)⊗

1

s1s2

= (r1s2α1 + r2s1α2)⊗
1

s1s2
,

so we may take α3 = r1s2α1 + r2s1α2 and β3 = 1/(s1s2).

The lemma implies that every element of End0(E) = End(E) ⊗Z Q can be written as
ϕ⊗ r for some ϕ ∈ End(E) and r ∈ Q; to simplify notation we will simply use rϕ to denote
ϕ⊗ r. Note that this representation is not unique (if r′ = r/n and ϕ′ = nϕ then r′ϕ′ = rϕ).
The only difference between rϕ, with r ∈ Q, and nϕ, with n ∈ Z, is that the former is not
necessarily an endomorphism, but if we multiply rϕ by the denominator of r we will get an
element of End(E) that corresponds to an endomorphism.

The canonical homomorphisms End(E) → End0(E) and Q → End0(E) are injective,
because End(E) and Q are torsion-free Z-algebras, so we may identify both End(E) and Q
with corresponding subrings of End0(E) that intersect in Z. Every element of End0(E) has
an integer multiple that lies in the subring End(E), and the subring Q lies in the center
of End0(E), which makes End0(E) a Q-algebra. We also note that End0(E) has no zero
divisors: if (rϕ)(r′ϕ′) = rr′ϕϕ′ = 0 then either rr′ = 0 or ϕϕ′ = 0, so one of r, r′, ϕ, ϕ′ is zero
(since Q and End(E) have no zero divisors); this implies that one of rϕ or r′ϕ′ is zero.

12.2 The Rosati involution and the reduced norm and trace

We now extend the involution α 7→ α̂ on End(E) to End0(E) by defining r̂α = rα̂ for all
r ∈ Q. This implies that r̂ = r for all r ∈ Q (take α = 1), and therefore ˆ̂α = α holds for all
α ∈ End0(E). We also have α̂β = β̂α̂ and α̂+ β = α̂+ β̂ for all α, β ∈ End0(E), since these
hold for elements of End(E) and scalars are fixed by α 7→ α̂ and commute. Thus the map
α 7→ α̂ is an involution of the Q-algebra End0(E), and it is known as the Rosati involution.

The Rosati involution allows us to extend the notions of degree and trace on End(E) to
a norm and a trace defined on all of End0(E).

Definition 12.6. Let α ∈ End0(E). The (reduced) norm of α is Nα = αα̂ and the (reduced)
trace of α is Tα = α+ α̂.2

2Nα and Tα are often called the reduced norm and reduced trace and may be denoted Nrdα and Trdα
to distinguish them from the more general notion of norm and trace in a Q-algebra, which involve taking
the determinant or trace of the Q-linear transformation β 7→ αβ (this coincides with the reduced norm and
trace when dimQ End0(E) = 2, but not otherwise). We shall only consider the reduced norm and trace.
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We now show that Nα and Tα lie in Q, and prove some other facts we will need.

Lemma 12.7. For all α ∈ End0(E) we have Nα ∈ Q≥0, with Nα = 0 if and only if α = 0.
We also have Nα̂ = Nα and N(αβ) = NαNβ for all α, β ∈ End0(E).

Proof. Write α = rϕ, with r ∈ Q, ϕ ∈ End(E). Then Nα = αα̂ = r2 deg ϕ ≥ 0. If r or ϕ is
zero then α = 0 and Nα = 0, and otherwise Nα > 0. We have αNα̂ = αα̂α = (Nα)α = αNα,
so Nα̂ = Nα when α ̸= 0 (since End0(E) has no zero divisors), and Nα̂ = Nα = 0 when
α = 0. Finally, for any α, β ∈ End0(E) we have

N(αβ) = αβα̂β = αββ̂α̂ = α(Nβ)α̂ = αα̂Nβ = NαNβ.

Corollary 12.8. Every nonzero α ∈ End0(E) has a multiplicative inverse α−1.

Proof. If we put β = α̂/Nα, then αβ = Nα/Nα = 1 and βα = Nα̂/Nα = 1, so β = α−1.

The corollary implies that End0(E) is a division ring ; it satisfies all the field axioms
except that multiplication need not be commutative. This means that End0(E) is a field if
and only if it is commutative.

Lemma 12.9. For all α ∈ End0(E) we have Tα̂ = Tα ∈ Q. For any r ∈ Q, α, β ∈ End0(E)
we have T(α+ β) = Tα+Tβ, and T(rα) = rTα.

Proof. We first note that Tα̂ = α̂+ ˆ̂α = α̂+ α = α+ α̂ = Tα, and

Tα = α+ α̂ = 1 + αα̂− (1− α)(1− α̂) = 1 + Nα−N(1− α) ∈ Q.

We also have

T(α+ β) = α+ β + α̂+ β = α+ β + α̂+ β̂ = α+ α̂+ β + β̂ = Tα+Tβ.

and
T(rα) = rα+ r̂α = rα+ α̂r̂ = rα+ α̂r = rα+ rα̂ = r(α+ α̂) = rTα,

since Q lies in the center of End0(E) and is fixed by the Rosati involution.

Lemma 12.10. Let α ∈ End0(E). Then α and α̂ are roots of the polynomial

x2 − (Tα)x+Nα ∈ Q[x].

Proof. We have

0 = (α− α)(α− α̂) = α2 − α(α+ α̂) + αα̂ = α2 − (Tα)α+Nα,

and similarly for α̂, since Tα̂ = Tα and Nα̂ = Nα.

Corollary 12.11. For any nonzero α ∈ End0(E), if Tα = 0 then α2 = −Nα < 0. An
element α ∈ End0(E) is fixed by the Rosati involution if and only if α ∈ Q.

Proof. The first statement follows immediately from α2− (Tα)α+Nα = 0. For the second,
we have r̂ = r for r ∈ Q, and if α̂ = α then Tα = α+ α̂ = 2α, so α = (Tα)/2 ∈ Q.
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12.3 Quaternion algebras

Before we can give a complete classification of the possible endomorphism algebras End0(E)
that can arise, we need to introduce quaternion algebras.

Definition 12.12. A quaternion algebra over a field k is a k-algebra that has a k-basis of
the form {1, α, β, αβ}, with α2, β2 ∈ k× and αβ = −βα.

Let H be a quaternion algebra over a field k. Then H is a 4-dimensional k-vector space
with basis {1, α, β, αβ}, and we may distinguish the subspace k ⊆ H spanned by 1, which
does not depend on the choice of α and β. The complementary subspace H0 (spanned by
α, β, αβ) is the space of pure quaternions. Every γ ∈ H has a unique decomposition of the
form a+ γ0 with a ∈ k and γ0 ∈ H0. The element γ̂ := a− γ0 is the conjugate of γ. If γ is
a pure quaternion then γ̂ = −γ, and for γ ∈ k we have γ̂ = γ.

The map γ 7→ γ̂ is an involution of the k-algebra H, and we define the (reduced) trace
Tγ := γ + γ̂ and (reduced) norm Nγ := γγ̂, both of which lie in k. It is easy to check that
Tγ = Tγ̂ and Nγ = Nγ̂, the trace is additive, the norm is multiplicative, and for a ∈ k we
have Ta = 2a and Na = a2.

Lemma 12.13. A quaternion algebra is a division ring if and only if Nγ = 0 implies γ = 0.

Proof. Let γ be a nonzero element of a quaternion algebra H. Then γ̂ ̸= 0 (since 0̂ = 0 ̸= γ)
If H is a division ring, then γ has an inverse γ−1 and γ−1Nγ = γ−1γγ̂ = γ̂ ̸= 0, so Nγ ̸= 0.
Conversely, if Nγ ̸= 0 then γ(γ̂/Nγ) = 1 and (γ̂/Nγ)γ = 1, so γ has an inverse γ̂/Nγ, which
implies that H is a division ring.

Example 12.14. The most well known example of a quaternion algebra is the ring of
Hamilton quaternions (or Hamiltonians) H: the R-algebra with basis {1, i, j, ij}, where
i2 = j2 = −1 and ij = −ji (the product ij is often denoted k). This was the first example
of a noncommutative division ring and has many applications in mathematics and physics.

Remark 12.15. The polynomial x2 + 1 has infinitely many roots in H (one can take any
x = bi+ cj + dk with b2 + c2 + d2 = 1).

Example 12.16. Let H = M2(k) be the ring of 2× 2 matrices over a field k with

α :=

(
1 0
0 −1

)
, β :=

(
0 1
1 0

)
, αβ =

(
0 1
−1 0

)
, βα =

(
0 −1
1 0

)
,

then α2 = β2 = 1 ∈ k× and αβ = −βα, so H is a quaternion algebra, but it is not a division
ring, by Lemma 12.13, since N(1+α) = (1+α)(1−α) = 0 but 1+α ̸= 0. Every quaternion
algebra that is not a division ring arises in this way. Such quaternion algebras are said to
be split, while those that are division rings are called non-split.

12.4 Classification theorem for endomorphism algebras

Theorem 12.17. Let E/k be an elliptic curve. Then End0(E) is isomorphic to one of:

(i) the field of rational numbers Q;

(ii) an imaginary quadratic field Q(α) with α2 < 0;

(iii) a quaternion algebra Q(α, β) with α2, β2 < 0.
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Proof. We always have Q ⊆ End0(E), and if Q = End0(E) we are in case (i).
Otherwise, let α be an element of End0(E) not in Q. By replacing α with α− 1

2Tα, we
may assume without loss of generality that Tα = 0, since

T

(
α− 1

2
Tα

)
= Tα− 1

2
TTα = Tα− 1

2
2Tα = 0,

where TTα = 2Tα because Tα ∈ Q. Now α2 < 0, by Corollary 12.11, and Q(α) ⊆ End0(E)
is an imaginary quadratic field. If Q(α) = End0(E) then we are in case (ii).

Otherwise, let β be an element of End0(E) not in Q(α). As with α, we may assume
without loss of generality that Tβ = 0 so that β2 < 0. By replacing β with

β − T(αβ)

2α2
α (1)

we can also assume T(αβ) = 0 (to check, multiply (1) by α and compute the trace; replac-
ing β with (1) does not change its trace because Tα = 0). Thus Tα = Tβ = T(αβ) = 0.
This implies α = −α̂, β = −β̂, and αβ = −α̂β = −β̂α̂. Substituting the first two equalities
into the third yields αβ = −βα. Applying this together with the fact that α2 < 0 and
β2 < 0 lie in Q, it is clear that {1, α, β, αβ} spans Q(α, β) as a Q-vector space.

To show that Q(α, β) is a quaternion algebra, we need to show that 1, α, β, and αβ are
Q-linearly independent. By construction, 1, α, β are linearly independent: note β ̸∈ Q(α)
implies α ̸∈ Q(β), since Q(β) = {r + sβ : r, s ∈ Q} (because β2 ∈ Q). Now suppose for the
sake of contradiction that

αβ = a+ bα+ cβ,

for some a, b, c ∈ Q. Taking traces on both sides yields T(a) = 0, so a = 0 (since a ∈ Q).
But then α(β − b) = cβ, which is impossible for Q-linearly independent α, β.

Thus Q(α, β) ⊆ End0(E) is a quaternion algebra with α2, β2 < 0. If Q(α, β) = End0(E)
then we are in case (iii).

Otherwise, let γ be an element of End0(E) that does not lie in Q(α, β). As with β, we
may assume without loss of generality that Tγ = 0 and T(αγ) = 0, which implies αγ = −γα.
Then αβγ = −βαγ = βγα, so α commutes with βγ. By Lemma 12.18 below, βγ ∈ Q(α).
This implies γ ∈ Q(α, β), contrary to our assumption that γ ̸∈ Q(α, β).

Lemma 12.18. If α, β ∈ End0(E) commute and α ̸∈ Q then β ∈ Q(α).

Proof. As in the proof of Theorem 12.17, we can transform α and β so that Tα = Tβ =
T(αβ) = 0, and therefore αβ = −βα; this involves replacing α with α−r and then replacing
β with β−s−tα for some r, s, t ∈ Q; if α and β commute then so do all Q-linear combinations,
so the hypothesis still holds. We then have αβ + βα = 2αβ = 0, which implies α = 0 or
β = 0, since End0(E) has no zero divisors. We cannot have α = 0, since α ̸∈ Q, so
β = 0 ∈ Q(α).

Remark 12.19. In the proofs of Theorem 12.17 and Lemma 12.18 we never used the fact
that End0(E) is the endomorphism algebra of an elliptic curve. Indeed, one can replace
End0(E) with any Q-algebra A possessing an involution α 7→ α̂ that fixes Q such that the
associated norm Nα = αα̂ maps nonzero elements of A to positive elements of Q; all other
properties of End0(E) that we used can be derived from these.
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Having classified the possible endomorphism algebras End0(E), our next task is to clas-
sify the possible endomorphism rings End(E). We begin with the following corollary to
Theorem 12.17.

Corollary 12.20. Let E/k be an elliptic curve. The endomorphism ring End(E) is a free
Z-module of rank r, where r = 1, 2, 4 is the dimension of End0(E) as a Q-vector space.

Recall that a free Z-module of rank r is an abelian group isomorphic to Zr.

Proof. Let us pick a basis {e1, . . . , er} for End0(E) as a Q-basis with the property that
T(eiej) = 0 unless i = j (use the basis {1, α} when End0(E) = Q(α) and {1, α, β, αβ} when
End0(E) = Q(α, β), where α and β are constructed as in the proof of Theorem 12.17). After
multiplying by suitable integers if necessary, we can assume without loss of generality that
e1, . . . er ∈ End(E) (this doesn’t change T(eiej) = 0 for i ̸= j).

For any Z-module A ⊆ End0(E) we have an associated dual Z-module

A∗ := {α ∈ End0(E) : T(αϕ) ∈ Z ∀ϕ ∈ A}.

Note that A∗ is closed under addition and multiplication by integers (if T(αϕ),T(βϕ) ∈ Z
then T(mαϕ + nβϕ) ∈ Z for all m,n ∈ Z), so A∗ is also a Z-module. It is clear from the
definition that if A and B are any Z-modules in End0(E), then A ⊆ B implies B∗ ⊆ A∗

(making A bigger imposes a stronger constraint on A∗).
Now let A be the Z-module spanned by e1, . . . , er ∈ End(E). Then A ⊆ End(E), and

therefore End(E)∗ ⊆ A∗. We also note that End(E) ⊆ End(E)∗, since T(αϕ) ∈ Z for all
α, ϕ ∈ End(E). Thus

A ⊆ End(E) ⊆ End(E)∗ ⊆ A∗.

We can write any α ∈ A∗ ⊆ End0(E) as a1e1 + · · · + arer for some a1, . . . , ar ∈ Q (since
e1, . . . , er is a Q-basis for End0(E)). For each ei we then have

T(αei) = a1T(e1ei) + · · ·+ arT(erei) = aiT(e
2
i ),

since T(eiej) = 0 for i ̸= j, and T(αei) = aiT(e
2
i ) ∈ Z since α ∈ A∗ and ei ∈ A. Thus ai is

an integer multiple of 1/T(e2i ), and it follows that {e1/T(e21), . . . , er/T(e2r)} is a basis for A∗

as a Z-module, which is therefore a free Z-module of rank r, as is A (both are torsion free
because End0(E) is torsion free). It follows that End(E) and End(E)∗ both free Z-modules
of rank r, since they are both contained in and contain a free Z-module of rank r (every
subgroup of Zr is isomorphic to Zs for some 0 ≤ s ≤ r).3

Definition 12.21. An elliptic curve E for which End(E) ̸≃ Z is said to have complex
multiplication.

It follows from Theorem 12.17 that if E has complex multiplication then End0(E) is
either an imaginary quadratic field or a quaternion algebra. Each element of End(E) that
does not lie in Z is the root of quadratic polynomial in Z[x] that has no real roots, which
we could view as a complex number (an algebraic integer, in fact). Elements ϕ of End(E)
that lie in Z correspond to multiplication by some integer n, and we may view elements of
End(E) that do not lie in Z as “multiplication” by some complex number that corresponds
to an algebraic integer that is a root of the characteristic polynomial of ϕ.

3More generally, if R is a principal ideal domain (PID) then every submodule of a free R-module of rank r
is free of rank s ≤ r. This fails when R is not a PID (submodules of a free module need not be free)
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12.5 Orders in Q-algebras

Definition 12.22. Let K be a Q-algebra of finite dimension r as a Q-vector space. An
order O in K is a subring of K that is a free Z-module of rank r. Equivalently, O is a
subring of K that is finitely generated as a Z-module and satisfies K = O ⊗Z Q.

Note that an order is required to be both a lattice (a free Z-module of maximal rank)
and a ring; in particular it must contain 1.

Example 12.23. The integers Z are the unique example of an order in Q. Non-examples
include the even integers, which is a lattice but not a ring, and the set {a/2n : a, n ∈ Z},
which is a ring but not a lattice (because it is not finitely generated as a Z-module).

It follows from Corollary 12.20 that the endomorphism ring End(E) is an order in the
Q-algebra End0(E). Note that if End0(E) = Q, then we must have End(E) = Z, but in
general there are infinitely many non-isomorphic possibilities for End(E).

Every order lies in some maximal order (an order that is not contained in any other);
this follows from an application of Zorn’s lemma, using the fact that elements of an order
necessarily have monic minimal polynomials. In general, maximal orders need not be unique,
but when the Q-algebra K is a number field (a finite extension of Q), this is the case. In
view of Theorem 12.17, we are primarily interested in the case where K is an imaginary
quadratic field, but it is just as easy to prove this for all number fields. We first need to
recall a few standard results from algebraic number theory.

Definition 12.24. An algebraic number α is a complex number that is the root of a poly-
nomial with coefficients in Q. An algebraic integer is a complex number that is the root of
a monic polynomial with coefficients in Z.

Two fundamental results of algebraic number theory are (1) the set of algebraic integers
in a number field form a ring, and (2) every number field has an integral basis (a basis whose
elements are algebraic integers). The following theorem gives a more precise statement.

Theorem 12.25. The set of algebraic integers OK in a number field K form a ring that is
a free Z-module of rank r, where r = [K : Q] is the dimension of K as a Q-vector space.

Proof. See Theorem 2.1 and Corollary 2.30 in [1] (or Theorems 2.9 and 2.16 in [3]).4

Theorem 12.26. The ring of integers OK of a number field K is its unique maximal order.

Proof. The previous theorem implies that OK is an order. To show that it is the unique
maximal order, we need to show that every order O in K is contained in OK . It suffices to
show that every α ∈ O is an algebraic integer. Viewing O as a Z-lattice of rank r = [K : Q],
consider the sublattice generated by all powers of α. Let [β1, . . . , βr] be a basis for this
sublattice, where each βi is a Z-linear combination of powers of α. Let n be an integer
larger than any of the exponents in any of the powers of α that appear in any βi. Then
αn = c1β1 + · · ·+ crβr, for some c1, . . . , cr ∈ Z, and this determines a monic polynomial of
degree n with α as a root. Therefore α is an algebraic integer.

Finally, we characterize the orders in imaginary quadratic fields, which are the number
fields we are most interested in.

4The proof of the second part of this theorem is essentially the same as the proof of Corollary 12.20;
instead of the reduced trace in End0(E), one uses the trace map from K to Q, which has similar properties.
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Theorem 12.27. Let K be an imaginary quadratic field with ring of integers OK . The
orders O in K are precisely the subrings Z+ fOK , where f is any positive integer.

Proof. The maximal order OK is a free Z-module (a lattice) of rank 2 that contains 1, so
it has a Z-basis of the form [1, τ ] for some τ ̸∈ Z. Let O = Z + fOK . It is clear that O is
a sub-lattice of OK that properly contains Z, hence it is of rank 2. The Z-module O is a
subset of the ring OK and contains 1, so to show that O is a ring it suffices to show that it
is closed under multiplication. So let a + fα and b + fβ be arbitrary elements of O, with
a, b ∈ Z and α, β ∈ OK . Then

(a+ fα)(b+ fβ) = ab+ afβ + bfα+ f2αβ = ab+ f(aβ + bα+ fαβ) ∈ O,

since ab ∈ Z and (aβ+ bα+ fαβ) ∈ OK . So O is a subring of K. To see that O is an order,
note that O ⊗Z Q = OK ⊗Z Q = K.

Now let O be any order in K. Then O is a rank-2 sub-lattice of OK = [1, τ ] that contains
1, so O must contain an integer multiple of τ . Let f be the least positive integer for which
fτ ∈ O. The lattice [1, fτ ] lies in O, and we claim that in fact O = [1, fτ ]. Any element
α of O must lie in OK and is therefore of the form α = a + bτ for some a, b ∈ Z. The
element bτ = α − a then lies in O, and the minimality of f implies that f divides b. Thus
O = [1, fτ ] = Z+ fOK .

Remark 12.28. In the theorem above we never actually used the fact that the quadratic
field K is imaginary; in fact, the theorem holds for real quadratic fields as well.

The integer f in Theorem 12.27 is called the conductor of the order O = Z + fOK . It
is equal to the index [OK : O], which is necessarily finite.
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