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10 Index calculus, smooth numbers, and factoring integers

Having explored generic algorithms for the discrete logarithm problem in some detail, we
now consider a non-generic algorithm based on index calculus.1 This algorithm depends
critically on the distribution of smooth numbers (integers with small prime factors), which
naturally leads to a discussion of two algorithms for factoring integers that also depend on
smooth numbers: the Pollard p− 1 method and the elliptic curve method (ECM).

10.1 Index calculus

Index calculus is a method for computing discrete logarithms in the multiplicative group of
a finite field. This might not seem directly relevant to the elliptic curve discrete logarithm
problem, but as we shall see when we discuss pairing-based cryptography, these two problems
are not completely unrelated. Moreover, index calculus based methods can be applied to the
discrete logarithm problem on elliptic curves over non-prime finite fields, as well as abelian
varieties of higher dimension (even over prime fields); see [8, 9, 10].2

We will restrict our attention to the simplest case, a finite field of prime order Fp ≃ Z/pZ,
and let us fix the set of integers in [0, N ] with N = p− 1 as a set of coset representatives for
Z/pZ. Index calculus exploits the fact that we “lift” elements of Z/pZ to their representatives
in [0, N ] ∩ Z.

Z Z/pZ ≃ Fp

←→
←→

The map Z → Z/pZ is the canonical quotient map given by reduction modulo p, and it is
a ring homomorphism. The “lifting” map from Z/pZ to Z is a section of the quotient map,
which is an injective map of sets but is not a ring homomorphism.3 Nevertheless, if we
lift elements from Z/pZ to Z, perform a sequence of ring operations in Z, and then reduce
modulo p, we will get the same result as if we had performed the entire sequence of ring
operations in Z/pZ ≃ Fp. A key feature of working in Z is that we can uniquely factor
integers in [1, N ] into prime powers, something that makes no sense in the field Z/pZ where
every nonzero element is a unit and there are no nontrivial prime ideals.

Let us fix a generator α for (Z/pZ)×, and let β ∈ ⟨α⟩ be the element whose discrete
logarithm we wish to compute. For any integer e, we may consider the prime factorization
of the integer αeβ−1 ∈ [1, N ] ⊆ Z; here we are implicitly lifting αeβ−1 ∈ Z/pZ to its unique
coset representative in [1, N ], as we will continue to do without further comment. When
e = logα β this prime factorization will be trivial, but in general we will have∏

peii = αeβ−1,

where the pi vary over primes and the exponents ei are nonnegative integers. Multiplying
both sides by β and taking discrete logarithms with respect to α yields∑

ei logα pi + logα β = e,

1If α is a generator for F×
p then the discrete logarithm of β ∈ F×

p with respect to α is also called the index
of β (with respect to α), whence the term index calculus.

2The two are related: if E is an elliptic curve over a finite field Fqn for some prime-power q, there is an
associated abelian variety of dimension n over Fq known as the Weil restriction of E.

3Indeed, there are no homomorphisms from rings of positive characteristic to rings of characteristic zero
(note that the zero ring has positive characteristic).
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which determines logα β as a linear expression in the discrete logarithms logα pi, where
logα pi denotes the discrete logarithm of the image of pi under the quotient map Z→ Z/pZ.
This doesn’t immediately help us, since we don’t know the values of logα pi. However, if
we repeat this procedure using many different values of e, we may obtain a system of linear
equations that we can try to solve for logα β.

In order to make this feasible, we need to restrict the primes pi to lie in a reasonably
small set. We thus fix a smoothness bound, say B, and define the factor base

PB = {p : p ≤ B is prime} = {p1, p2, . . . , pb},

where b = π(B) is the number of primes up to B (of which there are approximately B/ logB).
Not all choices of e will yield an integer αeβ−1 ∈ [1, N ] ⊆ Z that we can factor over our
factor base PB, in fact most will not. But some choices will work, and for those that do we
obtain a linear equation of the form

e1 logα p1 + e2 logα p2 + · · ·+ eb logα pb + logα β = e,

in which at most ⌊lgN⌋ of the ei are nonzero. We may not know any of the discrete
logarithms that appear in this relation, but we can view

e1x1 + e2x2 + · · ·+ ebxb + xb+1 = e

as a linear equation in b + 1 variables x1, x2, . . . , xb+1 over the ring Z/NZ. This equation
has a solution, namely, xi = logα pi, for 1 ≤ i ≤ b, and xb+1 = logα β. If we collect b + 1
such equations by choosing random values of e and discarding those for which αeβ−1 is
not B-smooth, the resulting linear system may determine a unique value xb+1, the discrete
logarithm we wish to compute.

This system will typically be under-determined; indeed, many of the variables xi may
not appear in any of our relations. But it is quite likely that the value of xb+1, which is
present in every equation, will be uniquely determined. We will not attempt to prove this
(to give a rigorous proof one really needs more than b + 1 equations, say, b log b), but it is
empirically true.4 This suggests the following algorithm to compute logα β.

Algorithm 10.1 (Index calculus). Given β ∈ ⟨α⟩ = (Z/pZ)×, compute logα β as follows:

1. Pick a smoothness bound B, compute the factor base PB := {p1, . . . , pb} with b :=
π(B), and let N := p− 1.

2. Generate b + 1 random relations Ri = (ei,1, ei,2, . . . , ei,b, 1, ei) by picking e ∈ [1, N ]
at random and attempting to factor αeβ−1 ∈ [1, N ] over the factor base PB. Each
successful factorization yields a relation Ri with ei = e and αeiβ−1 =

∏
p
ei,j
j .

3. Attempt to solve the system defined by the relations R1, . . . , Rb+1 for xb+1 ∈ Z/NZ
using linear algebra (row reduce the corresponding matrix).

4. If xb+1 = logα β is uniquely determined, return this value, otherwise go to step 2.

It remains to determine the choice of B in step 1, but let us first make the following remarks.

Remark 10.2. It is not actually necessary to start over from scratch when xb+1 is not
uniquely determined, typically adding just a few more relations will be enough.

4When considering potential attacks on a cryptographic system, one should always be willing to make
any reasonable heuristic assumption that helps the attacker.
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Remark 10.3. As noted above, the relations R1, . . . , Rb+1 will be very sparse (at most
⌊lgN⌋+ 1 nonzero coefficients in each), which can speed up the linear algebra step signifi-
cantly.

Remark 10.4. While solving the system R1, . . . , Rb+1 we are likely to encounter non-
invertible elements of Z/NZ (for example, 2 is never invertible, since N = p − 1 is even).
Whenever this happens we can use a GCD computation to obtain a non-trivial factorization
N = N1N2 with N1 and N2 relatively prime. We then proceed to work in Z/N1Z×Z/N2Z,
using the CRT to recover the value of xb+1 in Z/NZ (recurse as necessary).

Remark 10.5. Solving the system of relations will determine not only xb+1 = logα β, but
also many xi = logα pi for pi ∈ PB, which do not depend on β. If we are computing discrete
logarithms for many different β with respect to the same base α, after the first computation
the number of relations we need is just one more than the number of xi = logα pi that
have yet to be determined. If we are computing discrete logarithms for Ω(b) values of β, we
expect to compute just O(1) relations per discrete logarithm, on average.

An integer whose prime factors are all bounded by B is said to be B-smooth. A large
value of B will make it more likely that αeβ−1 is B-smooth, but it also makes it more difficult
to determine whether this is in fact the case, since we need to determine all he prime factors
of αeβ−1 up to B. We want to balance the cost of smoothness testing against the number
of smoothness tests we expect to need in order to get b + 1 relations (note that b depends
on B). Let us suppose for the moment that the cost of the linear algebra step is negligible
by comparison (which turns out to be the case, at least in terms of time complexity). If
we choose e ∈ [1, N ] uniformly at random then αe, and therefore αeβ−1, will be uniformly
distributed over (Z/pZ)×, uniquely represented by the set of integers in [1, N ]. To determine
the optimal value of B, we need to know the probability that a random integer in [1, N ] is
B-smooth.

10.2 The Canfield-Erdös-Pomerance Theorem

For positive real numbers x and y, let ψ(x, y) count the y-smooth integers in [1, x]. The
probability that a random integer m ∈ [1, x] is y-smooth is then approximately 1

xψ(x, y).
We want our smoothness bound y to vary as a function of x, so it is standard to define

u :=
log x

log y

and replace y by x1/u.

Theorem 10.6 (Canfield-Erdős-Pomerance). The asymptotic bound

1

x
ψ(x, x1/u) = u−u+o(u)

holds uniformly as u, x→∞, provided that u < (1− ϵ) log x/ log log x for some ϵ > 0.

For a proof on this result along with many other interesting facts about smooth numbers,
we recommend the survey article by Granville [13].

18.783 Fall 2025, Lecture #10, Page 3



10.3 Optimizing the smoothness bound

Let us assume that generating relations in step 2 dominates the overall complexity of Al-
gorithm 10.1, and for the moment suppose that we simply use trial-division to attempt to
factor αeβ−1 over PB (we will see a more efficient method for smoothness testing shortly).
The expected running time of Algorithm 10.1 is then approximately

(b+ 1) · uu · b ·M(logN), (1)

where u = logN/ logB. The four factors in (1) are:

• b+ 1: the number of relations Ri that we need;

• uu: the expected number of random exponents e we need to try in order to obtain a
B-smooth integer m := αeβ−1 ∈ [1, N ];

• b: the number of trial divisions to test whether m is B-smooth (and factor it if it is);

• M(logN): the time for each trial division.

We have b = π(B) ∼ B/ logB, and if we ignore logarithmic factors we can replace both b+1
and b by B and drop the M(logN) factor. We wish to choose u to minimize the quantity

B2uu = N2/uuu, (2)

where we have used Bu = N to eliminate B. Taking logarithms, it suffices to minimize

f(u) = log(N2/uuu) =
2

u
logN + u log u,

so we want to consider solutions to

f ′(u) = − 2

u2
logN + log u+ 1 = 0.

Ignoring the asymptotically negligible constant 1, we would like to pick u so that

u2 log u ≈ 2 logN.

For
u = 2

√
logN/ log logN, (3)

we have

u2 log u =
4 logN

log logN
·
(
log 2 +

1

2
(log logN − log log logN)

)
= 2 logN + o(logN),

as desired. The choice of u in (3) implies that we should use the smoothness bound

B = N1/u = exp

(
1

u
logN

)
= exp

(
1

2

√
logN log logN

)
= LN [1/2, 1/2].
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Here we have used the asymptotic notation

LN [α, c] := exp
(
(c+ o(1))(logN)α(log logN)1−α

)
,

which is commonly used to denote complexity bounds of this form. Note that

LN [0, c] = exp((c+ o(1) log logN) = (logN)c+o(1)

is polynomial in logN , whereas

LN [1, c] = exp((c+ o(1)) logN) = N c+o(1)

is exponential in logN . For 0 < α < 1 the bound LN [α, c] is subexponential (in logN).
We also have uu = exp(u log u) = LN [1/2, 1], thus the total expected running time is

B2uu = LN [1/2, 1/2]2 · LN [1/2, 1] = LN [1/2, 2].

The cost of the linear algebra step is certainly no worse than Õ(b3), which is Õ(B3), In our
subexponential notation this is LN [1/2, 3/2], which is dominated by the bound above, so our
assumption that the cost of generating relations dominates the running time is justified. In
fact, if we take advantage of the sparseness of the system noted in Remark 10.3, the cost of
the linear algebra step can be bounded by Õ(b2). However, in large computations the linear
algebra step is often a limiting factor in practice because it is memory intensive and not as
easy to parallelize as relation finding.

Remark 10.7. As noted earlier, if we are computing many (say at least LN [1/2,
√
2/2])

discrete logarithms with respect to the same base α, we just need O(1) relations per β, on
average. In this case we should choose B = N1/u to minimize Buu rather than B2uu. This
yields an average expected running time of LN [1/2,

√
2] per discrete logarithm.

A simple version of Algorithm 10.1 using trial-division for smoothness testing is imple-
mented in this Sage notebook.

10.4 Improvements

Using the elliptic curve factorization method (ECM) described in the next section, the cost
of testing and factoring B-smooth integers can be made subexponential in B and polynomial
in logN . This effectively changes B2uu in (2) to Buu, and the optimal smoothness bound
becomes B = LN [1/2, 1/

√
2], yielding a heuristic expected running time of

LN [1/2,
√
2].

There is a batch smoothness testing algorithm due to Bernstein [3] that for a sufficiently
large set of integers yields an average time per integer that is actually polynomial in logN ,
but this does not change the complexity in a way that is visible in our LN [α, c] notation.

Using more advanced techniques, analogous to those used in the number field sieve for
factoring integers, one can achieve a heuristic expected running time of the form

LN [1/3, c]

for computing discrete logarithms in F×
p (again using an index calculus approach); see [12].
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In finite fields of small characteristic Fpn ≃ Fp[x]/(f(x)), one uses the function field
sieve, where now the factor base consists of low degree polynomials in Fp[x] that represent
elements of Fpn when reduced modulo f(x). This also yields an LN [1/3, c] bound (with a
smaller value of c). Under heuristic assumptions, such a bound holds for all finite fields [16].

But this is far from the end of the story. In 2013 Antoine Joux announced an index
calculus approach for finite fields of the form Fqk with q ≈ k that heuristically achieves
an LN [1/4 + o(1), c] time complexity [14]. Shortly thereafter a recursive variant of Joux’s
approach was used to obtain a heuristically quasi-polynomial-time complexity of kO(log k),
which in terms of N = qk is bounded by LN [ϵ, c] for every ϵ, c > 0. At first glance the
assumption q ≈ k might seem restrictive, but even for finite fields of the form F2k with k
prime it suffices to compute discrete logarithms in the extension field F2kr with r = ⌈lg k⌉,
which for q = 2r ≈ k has the desired form Fqk . Even though we are now working in a larger
field, the kO(log k) bound is still quasi-polynomial in the input size k, and as a function of
N = 2k it is dominated by LN [ϵ, c] for all ϵ, c > 0, hence quasi-polynomial-time.

As of March 2021 the record for computing discrete logarithms in finite fields was set in
the field F230750 , using about 2900 core-years in 2019 [11]. The record for prime degree finite
fields was set in 2014 in the field F21279 , using less than 4 core years [15] (this record could
surely be improved), and the record for “safe” prime fields Fp (where (p − 1)/2 is prime),
was set in 2019 for a 795-bit prime p using about 3100 core years [6].

The recent dramatic improvements in computing discrete logarithms in finite fields of
small characteristic has effectively eliminated interest in pairing-based elliptic curve cryp-
tography over such fields. As discussed in Lecture 1, in pairing-based cryptography one
needs to consider the difficulty of the discrete logarithm problem both in the group of ra-
tional points on an elliptic curve over a finite field Fq and in the multiplicative group of a
low degree extension of Fq. None of these results have had any impact on the prospects of
pairing-based cryptography over prime fields.5

10.5 The Pollard p− 1 method

In 1974, Pollard introduced a Monte Carlo algorithm for factoring integers [19] that works
astonishingly well when the integer p − 1 is extremely smooth (but in the worst case is no
better than trial division). The algorithm takes as input an integer N to be factored and a
smoothness bound B.

Algorithm 10.8 (Pollard p− 1 factorization).
Input: An integer N to be factored and a smoothness bound B.
Output: A proper divisor of N or failure.

1. Pick a random integer a ∈ [1, N − 1].

2. If d = gcd(a,N) is not 1 then return d.

3. Set b = a and for each prime ℓ ≤ B:

a. Set b = bℓ
e
mod N , where ℓe−1 < N ≤ ℓe. If b = 1 then return failure.

b. If d = gcd(b− 1, N) is not 1 then return d.

4. Return failure
5Quantum computers are a potential threat, but this is a separate issue; the attacks based on Joux’s

breakthrough all use classical models of computation.
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Rather than using a fixed bound B, we could simply let the algorithm keep running
through primes ℓ until it either succeeds or fails in step 3b. But in practice one typically
uses a very small smoothness bound B and switches to a different algorithm if the p − 1
method fails. In any case, it is convenient to have B fixed for the purposes of analysis.

Example 10.9. Let N = 899 and suppose we pick a = 2 in step 1. Then d = 1 in step 2,
and the table below illustrates the situation at the end of each iteration of step 3.

ℓ e b d

2 10 605 1
3 7 690 1
5 5 683 31

The algorithm finds the factor 31 of N = 29 ·31 when ℓ = 5 because #(Z/31)× = 30 = 2 ·3 ·5
is 5-smooth but #(Z/29)× = 28 = 22 ·7 is not: if we put m = 210 ·37 ·55 then m is divisible by
#(Z/31Z)× but not by #(Z/29Z)×, and it follows that we always have am ≡ 1 mod 31, but
for most choices of a we will have am ̸≡ 1 mod 29, leading to d = gcd(am − 1, 29 · 31) = 31.

If we had instead used N = 31 · 41 we would have found d = N when ℓ = 5 and failed
because #(Z/41Z)× = 40 = 23 · 5 has the same largest prime factor as #(Z/31Z)×.

Theorem 10.10. Let p and q be prime divisors of N , and let ℓp and ℓq be the largest prime
divisors of p− 1 and q− 1, respectively. If ℓp ≤ B and ℓp < ℓq then Algorithm 10.8 succeeds
with probability at least 1− 1

ℓq
.

Proof. If a ≡ 0 mod p then the algorithm succeeds in step 2, so we may assume a ⊥ p. When
the algorithm reaches ℓ = ℓp in step 3 we have b = am, where m =

∏
ℓ≤ℓp

ℓe is a multiple of
p− 1. By Fermat’s little theorem, b = am ≡ 1 mod p and therefore p divides b− 1. But ℓq
does not divide m, so with probability at least 1 − 1

ℓq
we have b ̸≡ 1 mod q, in which case

1 < gcd(b− 1, N) < N in step 3b and the algorithm succeeds.

For almost all values of N , Algorithm 10.8 will succeed with very high probability given
the smoothness bound B =

√
N . But if N is a prime power, or if the largest prime dividing

p − 1 is the same for every prime factor p of N it will still fail, no matter what value of a
is chosen. In the best case, the algorithm can succeed very quickly. As demonstrated in
this Sage notebook, if N = p1p2 where p1 and p2 are 512-bit primes, if p1 − 1 happens to
be very smooth then Algorithm 10.8 can factor N within a few seconds; no other algorithm
currently known can factor this integer N in a reasonable amount of time. However, in the
worst-case the running time is O(π(B)M(logN) logN), and with B =

√
N the complexity is

O(
√
N M(logN)), the same as trial division (and as noted above, success is not guaranteed).

But rather than focusing on factoring a single integerN , let us consider a slightly different
problem. Suppose we have a large set of composite integers (for example, a list of RSA
moduli6), and our goal is to factor any one of them. How long would this take if we simply
applied the p− 1 method to each integer one-by-one?

For a given value of B, the expected time for the algorithm to achieve a success is

O(π(B)M(logN) logN)

Pr[success]
. (4)

6In fact, many RSA key generation algorithms incorporate specific measures to prevent the type of attack
we consider here. In any case, current RSA keys are necessarily large enough (2048 bits) to be quite safe
from the LN [1/2,

√
2] algorithm considered here.
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Let p be a prime factor of N . The algorithm is very likely to succeed if p− 1 is B-smooth,
since it is very unlikely that all the other prime factors q of N have q − 1 with exactly the
same largest prime factor as p − 1. Let us heuristically assume that integers of the form
p− 1 are at least as likely to be smooth as a random integer of similar size.

By the Canfield-Pomerance-Erdős Theorem, the probability that a random integer less
than N is B-smooth is u−u+o(u), where u = logN/ logB. If we ignore the o(u) error term
and factors that are polynomial in logN (which will be bounded by o(u) in any case), we
may simplify (4) to

N1/uuu. (5)

This is minimized (up to asymptotically negligible factors) for u =
√
2 logN/ log logN , thus

we should use the smoothness bound

B = N1/u = exp
((

1/
√
2 + o(1)

)√
logN log logN

)
= LN [1/2, 1/

√
2],

where the o(1) term incorporates the o(u) error term and the factors polynomial in logN
that we have ignored. We also have uu = exp(u log u) = LN [1/2, 1/

√
2], and the total expected

running time is therefore

N1/uuu = LN [1/2, 1/
√
2]LN [1/2, 1/

√
2] = LN [1/2,

√
2].

Thus even though the p−1 method has an exponential worst-case running time, if we apply
it to a sequence of random integers we achieve a (heuristically) subexponential running time.
But this isn’t much help if there is a particular integer N that we want to factor.

10.6 The elliptic curve method for factoring integers (ECM)

Using elliptic curves we can effectively achieve the randomized scenario envisioned above
while keeping N fixed. The Pollard p − 1 algorithm works in the group (Z/NZ)×, but we
can also think of it as performing simultaneous computations in the groups (Z/pZ)× for
primes p|N ; it succeeds when one of these groups has smooth order. If we instead take an
elliptic curve E/Q defined by an integral equation y2 = x3 + Ax + B that we can reduce
modulo N , we have an opportunity to factor N whenever E(Fp) has smooth order, for some
prime p|N . The key difference is that we can vary the curve E while keeping N fixed; we
get a new group E(Fp) each time we change E. This is the basis of the elliptic curve method
(ECM), introduced by Hendrik Lenstra [17] in the mid 1980s.

The algorithm is essentially the same as Pollard’s p− 1 method. Rather than exponen-
tiating a random element of (Z/NZ)× to a large smooth power and hoping that it becomes
the identity modulo some prime p dividing N , we instead multiply a random point on an
elliptic curve by a large smooth scalar and hope that it becomes the identity modulo some
prime p dividing N . If this doesn’t happen we switch to a different curve and try again.

As in Pollard’s p − 1 algorithm, we don’t know the primes p dividing N a priori, so
we work modulo N and use GCD’s to find a factor of N . If P is a point on E/Q and
mP = (Qx : Qy : Qz) is a multiple of P that reduces to 0 modulo a prime p dividing N ,
then p divides gcd(Qz, N). Notice that even though we are working with points on an elliptic
curve over Q, we only care about their reductions modulo primes dividing N , so we can keep
the coordinates reduced modulo N throughout the algorithm.

In order to get a proper divisor of N we also need gcd(Qz, N) ̸= N . This is very
likely to be the case, so long as P is not a torsion point of E(Q); if P is a torsion point
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it will have the same order modulo every prime divisor of N and we will always have
gcd(Qz, N) = N whenever the gcd is non-trivial. Given an elliptic curve E/Q, it is generally
hard to find non-torsion points in E(Q), in fact there may not be any.7 Instead we pick
integers x0, y0, a ∈ [1, N − 1] and let b = y20 − x30 − ax0. This guarantees that P = (x0, y0)
is a rational point on the elliptic curve E/Q defined by y2 = x3 + ax + b. The probability
that P is a torsion point is negligible.8 We now give the algorithm, which takes not only an
integer N and a smoothness bound B, but also a bound M on the largest prime factor of
N that we seek to find (as discussed below, this is useful for smoothness testing).

Algorithm 10.11 (ECM).
Input: An integer N to be factored, a smoothness bound B, and a prime bound M .
Output: A proper divisor of N or failure.

1. Pick random integers a, x0, y0 ∈ [0, N − 1] and set b = y20 − x30 − ax0.
2. If d = gcd(4a3 + 27b2, N) is not 1 then return d if d < N or failure if d = N .

3. Let Q = P = (x0 : y0 : 1).

4. For all primes ℓ < B:

a. Set Q = ℓeQ mod N , where ℓe−1 ≤ (
√
M + 1)2 < ℓe.

b. If d = gcd(Qz, N) is not 1 then return d if d < N or failure if d = N .

5. Return failure.

The scalar multiplication in step 4a is performed using projective coordinates, and while
it is defined in terms of the group operation in E(Q), we only keep track of the coordinates
of Q modulo N ; the projective coordinates are integers and there are no inversions involved,
so all of the arithmetic can be performed in Z/NZ.

Theorem 10.12. Assume 4a3+27b2 is not divisible by N , and let P1 and P2 be the reductions
of P modulo distinct primes p1 and p2 dividing N , with p1 ≤M . Suppose |P1| is ℓ1-smooth
and |P2| is not, for some prime ℓ1 ≤ B. Then Algorithm 10.11 succeeds.

Proof. When the algorithm reaches step 4b with ℓ = ℓ1 we must have Q = mP , where
m =

∏
ℓ≤ℓ1

ℓe is a multiple of |P1|, since |P1| is ℓ1-smooth and |P1| ≤ (
√
p1+1)2 ≤ (

√
M+1)2.

So Q ≡ 0 mod p1, but Q ̸≡ 0 mod p2, since |P2| is not ℓ1-smooth. Therefore Qz is divisible
by p1 but not p2 and a proper factor d = gcd(Qz, N) of N will be found in step 4b.

If the algorithm fails, we can simply try again. Heuristically, provided N is not a
perfect power and has a prime factor p ≤ M , we will eventually succeed. Factoring perfect
powers can be efficiently handled by the algorithm developed in Problem 1 of Problem Set 3.
Provided N is not a prime power and has a prime factor p < M , Algorithm 10.11 is very
likely to succeed whenever it picks a triple (x0, y0, a) that yields an elliptic curve whose
reduction modulo p has B-smooth order. So the number of times we expect to run the
algorithm before we succeed depends on the probability that #E(Fp) is B-smooth.

The integer #E(Fp) must lie in the Hasse interval [p+ 1− 2
√
p, p+ 1 + 2

√
p], which is

unfortunately too narrow for us to apply any theorems on the density of B-smooth integers
7There are standard parameterizations that are guaranteed to produce a curve E/Q with a known point

P ∈ E(Q) of infinite order; see [1], for example. Here we just generate random E and P at random.
8This follows (for example) from the Lutz–Nagell theorem [20, Theorem 8.7], which implies that if y0 is

nonzero then y2
0 must divide 4a3 + 27b2 = 4a3 + 27(x3

0 + ax0)
2, which is extremely unlikely.
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(we cannot even prove that this interval contains any primes, and smooth numbers are much
rarer than primes). So to analyze the complexity of Algorithm 10.11 (and to optimize the
choice of B), we resort to the heuristic assumption that, at least when #E(Fp) lies in the
narrower interval [p + 1 − √p, p + 1 +

√
p], the probability the #E(Fp) is B-smooth is

comparable to the probability that a random integer in the interval [p, 2p] is B-smooth.9

One can prove that the probability that #E(Fp) lies in [p + 1 − √p, p + 1 +
√
p] is at

least 1/2 (this is implied, asymptotically, by the Sato–Tate theorem), and further that the
probability that #E(Fp) takes on any particular value in this interval is Ω(1/(

√
p log p)).

These facts are both proved in Lenstra’s paper [17], and we will be able to prove them
ourselves once we have covered the theory of complex multiplication. This means that we
can make our heuristic assumption independent of any facts about elliptic curves, we simply
need to assume that a random integer in the interval [p+ 1−√p, p+ 1 +

√
p] has roughly

the same probability of being B-smooth as a random integer in the interval [p, 2p].
Under our heuristic assumption, the analysis of the algorithm follows the analysis of

the Pollard p− 1 method. This algorithm takes O(π(B)(logM)M(logN)) time per elliptic
curve, and if N has a prime factor p ≤ M , it will need to try an average of O(uu) curves
before it finds a factor. As in §10.5, this implies that the optimal value of B is LM [1/2, 1/

√
2],

and with this value of B the expected time to factor N is LM [1/2,
√
2]M(logN). In general,

we may not know a bound M on the smallest prime factor p of N a priori, but if we simply
start with a small choice of M and periodically double it, we can achieve a running time of

Lp[1/2,
√
2]M(logN),

where p is the smallest prime factor of N .
A crucial point is that this running time depends almost entirely on p rather than N , a

property that distinguishes ECM from all other factorization algorithms with heuristically
subexponential running times. There are factorization algorithms such as the quadratic
sieve and the number field sieve that are heuristically faster when all of the prime factors of
N are large, but in practice one first uses ECM to look for any relatively small prime factors
before resorting to these heavyweight algorithms.

The fact that the complexity of ECM depends primarily on the size of the smallest prime
divisor of N also makes it a very good algorithm for smoothness testing. Testing whether a
given integer N is LN [1/2, c]-smooth using ECM takes just

LLN [1/2,c]

[
1/2,
√
2
]
≈ exp

(√
2 log(exp(c

√
logN log logN) log log(exp(c

√
logN log logN)

)
= exp

(√
2c
√
logN log logN(1/2 + o(1)) log logN

)
= exp

(
(
√
c+ o(1))(logN)

1/4(log logN)
3/4
)

= LN

[
1/4,
√
c
]

expected time, which is faster than any other method known.10

10.7 Efficient implementation

Algorithm 10.11 spends essentially all of its time performing elliptic curve scalar multiplica-
tions modulo N , so it is worth choosing the elliptic curve representation and the coordinate

9Asymptotically, this is the same as the probability that a random integer in [1, p] is B-smooth.
10As noted earlier, for batch smoothness testing, Bernstein’s algorithm [3] is faster.

18.783 Fall 2025, Lecture #10, Page 10



system to optimize this operation. Edwards curves, which we saw in Lecture 2, are an ex-
cellent choice; see [4] for a detailed discussion of how to efficiently implement ECM using
Edwards curves. Another popular choice is Montgomery curves [18]; as explained in [5],
there is a close relationship between Montgomery curves and Edwards curves. These were
originally introduced specifically for the purpose of optimizing the elliptic curve factorization
method but are now used in many other applications of elliptic curves, including primality
proving and cryptography.

10.8 Montgomery Curves

A Montgomery curve is an elliptic curve defined by an equation of the form

By2 = x3 +Ax2 + x, (6)

where B ̸= 0 and A ̸= ±2. To convert this to Weierstrass form, let u = Bx and w = B2y.
Substituting x = u/B and y = w/B2 in (6) and multiplying by B3 yields

w2 = u3 +ABu2 +B2u,

which is in the form of a general Weierstrass equation. To obtain a short Weierstrass
equation, we assume our base field has characteristic different from 3 and complete the cube
by letting v = u+ AB

3 . We then obtain

w2 = u3 +ABu2 +B2u

w2 =

(
v − AB

3

)3

+AB

(
v − AB

3

)2

+B2

(
v − AB

3

)
w2 = v3 −ABv2 + A2B2

3
v − A3B3

27
+ABv2 − 2A2B2

3
v +

A3B3

9
+B2v − AB3

3

w2 = v3 +

(
B2 − A2B2

3

)
v +

(
2A3B3

27
− AB3

3

)
.

In order to check that (6) actually defines an elliptic curve, we should verify that it
is nonsingular. We could do these using the coefficients of the curve in short Weierstrass
form, but it is easier to do this directly. We need to determine whether there are any points
(x : y : z) on the projective curve By2z = x3 + Ax2z + xz2 at which all three partial
derivatives vanish. For any such point we must have

∂

∂x
: 3x2 + 2Axz + z2 = 0,

∂

∂y
: 2Byz = 0,

∂

∂z
: By2 − (Ax2 + 2xz) = 0.

We assume we are working in a field of characteristic not equal to 2 or 3. Suppose that
y ̸= 0. Then the equation for ∂

∂y gives z = 0, and from ∂
∂x , we get x = 0. But this is a

contradiction, since the equation for ∂
∂z is not satisfied. On the other hand, if y = 0, then

z = −A
2 x ̸= 0. We have 3x2 − A2x2 + A2

4 x
2 = 0, and therefore 3 − 3

4A
2 = 0, since x ̸= 0.

Thus A2 = 4, but we require A ̸= ±2 in (6), so this cannot be the case.

10.9 Montgomery curve group law

The transformation of a Montgomery curve to Weierstrass form is a linear transformation
that preserves the symmetry about the y-axis, so the geometric view of the group law
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remains the same: three points on a line sum to zero, which is the point at infinity. To add
points P1 and P2 we construct the line P1P2 (using a tangent when P1 = P2), find the third
intersection point with the curve, and then reflect over the y-axis to obtain P3 = P1 + P2.
In this section we compute explicit algebraic formulas for this operation, just as we did for
curves in Weierstrass form earlier in the course.

The cases involving inverses and the point at infinity are easy (we have P − P = 0 and
P + 0 = 0 + P = P ), so let P1 = (x1, y1) and P2 = (x2, y2) be two (possibly equal but not
opposite) affine points on the curve whose sum P3 = (x3, y3) we wish to compute. We first
compute the slope m of the line P1P2.

m =


y1 − y2
x1 − x2

if P1 ̸= P2,

3x21 + 2Ax1 + 1

2By1
if P1 = P2.

(7)

Now we want to intersect the line y−y1 = m(x−x1) with the curve equation (6). Substituting
m(x− x1) + y1 in for y, we get

B (m(x− x1) + y1)
2 = x3 +Ax2 + x. (8)

We know x1, x2, and x3 are the three roots of this cubic equation, since P1, P2, and −P3

all lie on the curve and the line P1P2. Thus the coefficient of x2 in (8) must be equal to
x1 + x2 + x3. We get a Bm2x2 term on the left side of (8) and an Ax2 term on the right,
so we have x1 + x2 + x3 = Bm2 − A. Solving for x3 and using the equation for P1P2 to
compute −y3, we obtain

x3 = Bm2 − (A+ x1 + x2) (9)
y3 = m(x1 − x3)− y1.

These formulas closely resemble the formulas for a curve in short Weierstrass form, but
with an extra B and A in the equation for x3. However, they have the key property that
they allow us to completely eliminate the y-coordinate from consideration. This is useful
because the y-coordinate is not needed in many applications; we do not need to know the
y-coordinate of a point P in order to determine whether mP = 0 for a given integer m. This
makes the y-coordinate superfluous in applications such as ECM and ECPP.

Let us consider the doubling case first. Plugging in the expression for m given by (7) in
the case P1 = P2 = (x1, y1) into (9) and remembering the curve equation By2 = x3+Ax2+x,

x3 = B
(3x21 + 2Ax1 + 1)2

4B2y21
− (A+ 2x1)

=
(3x21 + 2Ax1 + 1)2 − 4(A+ 2x1)(x

3
1 +Ax21 + x1)

4(x31 +Ax21 + x1)

=
(x21 − 1)2

4x1(x21 +Ax1 + 1)
,

thus we can derive x3 from x1 without needing to know y1. In projective coordinates,

=
(x21 − z21)2

4x1z1(x21 +Ax1z1 + z21)

=
(x21 − z21)2

4x1z1
(
(x1 − z1)2 + (A+ 2)x1z1

) .
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Thus we may write

x3 = (x1 + z1)
2(x1 − z1)2

4x1z1 = (x1 + z1)
2 − (x1 − z1)2 (10)

z3 = 4x1z1
(
(x1 − z1)2 + C(4x1z1)

)
.

where C = (A+ 2)/4. Notice that these formulas do not involve y1 and they only require 5
multiplications: 3 to compute x3, none to compute 4x1z1, and 2 more to compute z3. One
of these is a multiplication by the constant C, which may take negligible time if we can
arrange for C to be small.

Now let us do the same thing for addition:

x3 = B
(y1 − y2)2

(x1 − x2)2
− (A+ x1 + x2)

x3(x1 − x2)2 = B(y1 − y2)2 − (A+ x1 + x2)(x1 − x2)2

= By21 +By22 − 2By1y2 − (A+ x1 + x2)(x1 − x2)2

= −2By1y2 + 2x1x2(A+ x1 + x2) + x1 + x2

= −2By1y2 + x2(x
2
1 +Ax1 + 1) + x1(x

2
2 +Ax2 + 1)

= −2By1y2 +
x2
x1
By21 +

x1
x2
By22

= B
(x2y1 − x1y2)2

x1x2
(11)

This gives us an equation for x3 in P3 = P1 + P2, but it still involves the y-coordinates of
P1 and P2. To address this, let us also compute the x-coordinate x4 of P4 = P1 − P2. The
hard work is already done, we just need to negate y2 in the equation for x3. Thus

x4(x1 − x2)2 = B
(x2y1 + x1y2)

2

x1x2
. (12)

Multiplying equations (11) and (12) yields

x3x4(x1 − x2)4 =
B2(x22y

2
1 − x21y22)2

x21x
2
2

=
(x22By

2
1 − x21By22)2

x21x
2
2

=

(
x22(x

3
1 +Ax21 + x1)− x21(x32 +Ax22 + x2)

)2
x21x

2
2

=
(
x2(x

2
1 +Ax1 + 1)− x1(x22 +Ax2 + 1)

)2
= (x2x

2
1 − x1x22 + x2 − x1)2

= ((x1 − x2)(x1x2 − 1))2 .

Canceling a factor of (x1 − x2)2 from both sides gives

x3x4(x1 − x2)2 = (x1x2 − 1)2, (13)

which does not involve y1 or y2 (but does require us to know x4).
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We now switch to projective coordinates:

x3
z3
· x4
z4

(
x1
z1
− x2
z2

)2

=

(
x1x2
z1z2

− 1

)2

x3
z3

=
z4
x4
· (x1x2 − z1z2)

2

(x1z2 − x2z1)2
,

which yields

x3 = z4 [(x1 − z1)(x2 + z2) + (x1 + z1)(x2 − z2)]2 (14)

z3 = x4 [(x1 − z1)(x2 + z2)− (x1 + z1)(x2 − z2)]2

These formulas require just 6 multiplications, but they assume that we already know the
x-coordinate x4/z4 of P1 − P2. But if we structure the double-and-add algorithm for scalar
multiplication appropriately, we can use the formulas in (10) and (14) to efficiently compute
the x-coordinate of the scalar multiplemP using what is known as a Montgomery ladder. We
assume points are represented simply as projective pairs (x : z) that omit the y-coordinate.

Algorithm 10.13 (Montgomery Ladder).
Input: A point P = (x1 : z1) on a Montgomery curve and a positive integer m.
Output: The point mP = (xm : zm).

1. Let m =
∑k

i=0mi2
i be the binary representation of m.

2. Set Q[0] = P and compute Q[1] = 2P (note that P = Q[1]−Q[0]).

3. For i = k − 1 down to 0:

a. Q[1−mi]← Q[1] +Q[0] (Using P = Q[1]−Q[0])
b. Q[mi]← 2Q[0]

4. Return Q[0].

The Montgomery ladder is the usual double-and-add algorithm, augmented to ensure
that Q[1] − Q[0] = P is invariant throughout. A nice feature of the algorithm is that
every iteration of the loop is essentially the same: a Montgomery addition followed by a
Montgomery doubling. This makes the algorithm resistant to side-channel attacks. If we
assume that the input point P is in affine form (x1 : 1), then z1 = z4 = 1 in the addition
formulas in (14), which saves one multiplication. This yields a total cost of

(
10+o(1)

)
log2m

field multiplications for Algorithm 10.13, or only
(
9+ o(1)

)
log2m if the constant C is small

enough to make the multiplications by C negligible. This is faster than using Edwards’
curves (at least in a side-channel resistant configuration where one is not using optimized
doubling formulas).

An implementation of Algorithms 10.11 and 10.13 can be found in this Sage notebook.

10.10 Torsion on a Montgomery Curve

Every Montgomery curve has (0, 0) as a rational point of order 2 (as with curves in short
Weierstrass form, the points of order 2 are precisely those with y-coordinate 0). This tells us
that not every elliptic curve can be put in Montgomery form, since not every elliptic curve
has a rational point of order 2. In fact, more is true.
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Theorem 10.14. The Montgomery curve E/k defined by By2 = x3 + Ax2 + x has either
three rational points of order 2 or a rational point of order 4 (possibly both).

Proof. The cubic x3 + Ax2 + x has either one or three rational roots, and these roots are
distinct, since the curve is nonsingular. If it has three roots, then there are three rational
points of the form (x, 0), all of which have order 2.

If it has only one root, then x2 +Ax+1 has no roots, so A2− 4 = (A+2)(A− 2) is not
a quadratic residue. Therefore one of A+2 and A− 2 is a quadratic residue (and the other
is not), so either A+2

B or A−2
B is a quadratic residue. We will use this fact to find a point

of order 4 that doubles to the 2-torsion point (0, 0), which is the unique point on the curve
whose x-coordinate is 0.

To get x3 = 0 in the doubling formulas (10), we must have x1 = ±z1, equivalently,
x1/z1 = ±1. Plugging this into the curve equation, we seek a solution to either By2 = A+2
or By2 = A− 2. But we have already shown that either A+2

B or A−2
B is a quadratic residue,

so one of these equations has a solution and there is a rational point of order 4.

Thus, like Edwards curves, the torsion subgroup of a Montgomery curve always has
order divisible by 4. For the purposes of the ECM algorithm this is actually a feature,
since it slightly increases the likelihood that the group order will be smooth. In fact, most
implementations use specific parameterizations to generate curves E/Q that are guaranteed
to have even larger torsion subgroups, typically isomorphic to either Z/12Z or Z/2Z⊕Z/8Z;
see [1, 4, 18] for examples (the Z/12Z case is illustrated in the example implementation).

The converse of Theorem 10.14 does not hold; there are elliptic curves with three rational
points of order 2 that cannot be put in Montgomery form. However, every elliptic curve
with a rational point of order 4 can be put in Montgomery form.

Theorem 10.15. Let E : y2 = x3 + ax+ b be an elliptic curve over a field k. Suppose E(k)
contains a point P of order 4, and let 2P = (x0, 0). Then 3x20 + a is a square in k and E
can be put in Montgomery form E′ : By2 = x3 + Ax2 + x by setting B = 1/

√
3x20 + a and

A = 3x0B; the map (x, y) 7→ (B(x− x0), By) defines an isomorphism from E to E′.

Proof. Let P = (u, v). From the elliptic curve doubling formula, we have

x0 =

(
3u2 + a

2v

)2

− 2u

=
(9u4 + 6au2 + a2)− 8u(u3 + au+ b)

4(u3 + au+ b)

=
u4 − 2au2 − 8bu+ a2

4(u3 + au+ b)
.

Therefore u satisfies

u4 − 4x0u
3 − 2au2 − (4ax0 + 8b)u− 4bx0 + a2 = 0.

We have 02 = x30 + ax0 + b, so we can replace b by −x30 − ax0, yielding

u4 − 4x0u
3 − 2au2 + (8x30 + 4ax0)u+ 4x40 + 4ax20 + a2 = 0.

The LHS is a perfect square. If we put u = z + x0 we can write this as

(z2 − (3x20 + a))2 = 0.
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Now z = u − x0 ∈ k, so z2 − (3x20 + a) must have a root in k. Thus 3x20 + a is a square,
as claimed, and it is nonzero because x0 is not a repeated root of x30 + ax0 + b. Now let
B = 1/

√
3x20 + a and A = 3x0B be as in the theorem and let E′ : By2 = x3 +Ax2 + x.

To check that (x, y) 7→ (B(x − x0), By) defines an isomorphism from E → E′, we plug
(B(x− x0), By) into the equation for E′ and note that

B(By)2 = (B(x− x0))3 +A(B(x− x0))2 +B(x− x0)
B2y2 = B2(x3 − 3x0x

2 + 3x20x− x30) + 3x0B
2(x2 − 2x0x+ x20) + x− x0

y2 = x3 − 3x20x+ 2x30 + (x− x0)(3x20 + a)

y2 = x3 + ax− x30 − ax0
y2 = x3 + ax+ b.

This also shows that E′ is not singular, since E is not (so we must have A2 ̸= 4).
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