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1 Introduction

Most of the content of the first lecture is contained in the slides that were used in class,
which aimed to give a broad overview of the theory and applications of elliptic curves. The
purpose of these notes is to summarize the formal definitions we will use in future lectures
and to provide additional details on using the Newton polygon to compute the genus of a
plane curve. They imply, in particular, that all nonsingular cubics, including the Weierstrass
equation y2 = x3+Ax+B with −16(4A3+27B2) ̸= 0, are curves of genus 1, as are Edwards
curves x2 + y2 = 1 + cx2y2 with c ̸= 0, 1, which are the main cases of interest to us.

1.1 Formal definition of an elliptic curve

Definition 1.1. Let k be a field. An elliptic curve E/k is a smooth projective curve of
genus 1 defined over k with a distinguished k-rational point O.

Note that the field k and the k-rational point O are part of the definition. To make this
precise we need to define the terms “smooth”, “projective curve”, “genus 1”, and “k-rational
point” that appear in the definition. For any field k we use k̄ to denote an algebraic closure
of k, which can be formed by adjoining the roots of all polynomials in k[x] to k.

Definition 1.2. Let k be a field. A projective point in Pn is an equivalence class of tuples
(x0, . . . , xn) ∈ k̄n+1 with at least one xi ̸= 0 given by the equivalence relation

(x0, . . . , xn) ∼ (λx0, . . . , λxn)

for all λ ∈ k̄×. A projective point in Pn is k-rational if it contains a representative with
(x0, . . . , xn) ∈ kn+1, equivalently, it is a tuple (x0, . . . , xn) with xi/xj ∈ k for all xj ̸= 0.
We use the notation (x0 : · · · : xn) to denote the equivalence class of the tuple (x0, . . . , xn).
The set of k-rational projective points in Pn is denoted Pn(k).

For n = 2 we typically use the coordinates x, y, z rather than x0, x1, x2 and call P2 the
projective plane. It will be convenient to distinguish the subset (x : y : 1) of projective points
in P2 with nonzero z-coordinate as the affine plane A2. The projective points in P2 that do
not lie in the affine plane (those with z-coordinate zero) make up the line at infinity, which
is isomorphic to the projective line P1. Of course the choice of the coordinate z is arbitrary,
we could have chosen x or y, but z is most commonly used.

Definition 1.3. Let R be a commutative ring. A polynomial f ∈ R[x0, . . . , xn] is ho-
mogeneous if every nonzero term of f has the same degree. For any nonzero polynomial
f ∈ R[x0, . . . , xn] we use deg f to denote the maximum of the degrees of its nonzero terms.
For each f ∈ R[x0, . . . , xn−1] there is a unique homogeneous polynomial f∗ ∈ R[x0, . . . , xn]
with deg f∗ = deg f that satisfies f∗(x0, . . . xn−1, 1) = f . It can be computed by replacing
each term t of f with the term txdeg f−deg t

n . The polynomial f∗ is the homogenization of f ,
and f is a dehomogenization of f∗.

Definition 1.4. Let k be a field. A plane projective curve X : f(x, y, z) = 0 is defined by a
nonzero homogeneous polynomial f ∈ k[x, y, z] that is irreducible as an element of k̄[x, y, z].
For any extension K/k the set of K-rational points of X is the zero locus of f in P2(K):

X(K) := {(x : y : z) ∈ P2(K)|f(x, y, z) = 0}.
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Because f is homogeneous, we have f(λx, λy, λz) = λdeg ff(x, y, z) for any nonzero λ.
It follows that either f vanishes at every element of the equivalence class (x : y : z), or it
vanishes at none of them; this ensures that X(K) is well defined.

For any nonzero λ ∈ k the polynomial λf has the same zero locus in P2(K) for every
extension K/k. The polynomials f and λf thus define the same curve X because they have
the same functor of points K 7→ X(K), which sends each field extension K/k to the set
X(K). Conversely, the functor of points K 7→ X(K) determines f up to multiplication by
λ ∈ k̄× (in fact X(k̄) is enough). A slightly more general perspective is to view the curve X
as being defined by the ideal (f) that f generates; note that (f) = (g) if and only if g = λf
for some nonzero λ.

Our requirement that f is irreducible ensures that f generates a prime ideal in k[x, y, z],
equivalently, that the quotient ring k[z, y, z]/(f) is an integral domain (has no zero divisors).
The quotient ring k[x, y, z]/(f) is the coordinate ring of the curve X, denoted k[X], which
will play a role in future lectures. We want it to be an integral domain so that we can
consider its field of fractions, which we will use to define the function field k(X).

We impose the stronger condition that f is irreducible in k̄[x, y, z] to ensure that f
generates a prime ideal in K[x, y, z] for any field extension K/k, so that K[x, y, z]/(f) is
always an integral domain (hence also has a field of fractions). Note that irreducibility
in k̄[x, y, z] is sufficient even if K is not contained in k̄; a polynomial in Q[x, y, z] that is
irreducible in Q[x, y, z] will also be irreducible in C[x, y, z], for example. But irreducibility in
k[x, y, z] is not sufficient: the polynomial x2 + y2 is irreducible in Q[x, y] but not in Q[x, y],
where it factors as (x+ iy)(x− iy), for example. Requiring irreducibility over k̄ ensures that
our curves are always geometrically irreducible.

We will often define plane curves using an affine equation of the form g(x, y) = h(x, y)
with g, h ∈ k[x, y] distinct. Such an equation should be interpreted as defining the curve
associated to the homogeneous polynomial f(x, y, z) := g∗(x, y, z)−h∗(x, y, z). In this course
all curves will be plane projective curves, even when they are defined by an affine equation.

Definition 1.5. A plane projective curve X/k defined by f ∈ k[x, y, z] is smooth at a point
P ∈ X(k̄) if at least one of the partial derivatives ∂f/∂x, ∂f/∂y, ∂f/∂z is nonzero at P
(note that the partial derivatives are all homogeneous polynomials); otherwise P is a singular
point of X. The curve X is smooth if it is smooth at every point in X(k̄), equivalently, there
are no points in the common zero locus of f and its partial derivatives.

Remark 1.6. One can define the notion of a projective curve in Pn, for any n ≥ 2, as an
algebraic variety of dimension one. For n > 2 one uses the zero locus of a set of homogeneous
polynomials (or more precisely, the ideal I that they generate, which we require to be a
prime ideal in k̄[x0, . . . , xn]) to define the functor of points, and uses the Krull dimension
(the maximal length of a chain of prime ideals) of the ring k̄[x0, . . . , xn]/I to compute its
dimension, which we require to be one. One then defines the notion of a smooth point using a
matrix of partial derivatives with a row for each polynomial. Plane projective curves are the
only curves we will consider in this course, in which case we can assume that I is generated
by a nonzero homogeneous polynomial f ∈ k[x, y, z] that is irreducible in k̄[x, y, z].

1.2 The genus of a plane curve

To formally define the genus of a curve over an arbitrary field requires material that is
beyond the scope of this course (one needs the Riemann-Roch theorem). In this section we
give a simple criterion for determining the genus of a plane projective curve defined by an
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affine equation f(x, y) = 0 for suitable polynomials f ∈ k[x, y] that involves counting integer
lattice points in the interior of its Newton polygon. This method can be used to compute
the genus of all the curves we will consider. For those not familiar with the Riemann-Roch
theorem, Proposition 1.11 below can be taken as the definition of the genus of a plane
projective curve defined by a suitable polynomial f ∈ k[x, y].

Let k be a field with algebraic closure k̄. As above, for a polynomial f ∈ k[x, y] we use
f∗ ∈ k[x, y, z] to denote its homogenization.

Definition 1.7. For a polynomial f(x, y) =
∑

aijx
iyj ∈ k[x, y], the Newton polygon ∆(f)

of f is the convex hull of the set {(i, j) : aij ̸= 0} ⊆ Z2 in R2. The interior and boundary
of ∆(f) are denoted ∆◦(f) and ∂∆(f), respectively, and for each edge γ ⊆ ∆(f) we define
the polynomial fγ(x, y) :=

∑
(i,j)∈γ aijx

iyj .

Theorem 1.8 (Baker’s Theorem). Let f(x, y) ∈ k[x, y] be irreducible in k̄[x, y], and let
F := Frac(k[x, y]/(f)) denote the corresponding function field, with genus g(F ). Then

g(F ) ≤ #{∆◦(F ) ∩ Z2}.

Proof. See [1, Theorem 2.4] for a short proof based on the Riemann–Roch theorem.

Definition 1.9. A polynomial f ∈ k[x, y] is nondegenerate with respect to an edge γ of
∂∆(f) if the polynomials fγ , x

∂fγ
∂x , y

∂fγ
∂y have no common zero in (k̄×)2. The polynomial f

is nondegenerate with respect to ∆(f) if it is nondegenerate with respect to every edge of
∂∆(f) and not divisible by x or y.

Remark 1.10. For any edge γ of ∆(f), if either of the partial derivatives of fγ(x, y) is
a monomial, then f is nondegenerate with respect to γ, since monomials have no zeros in
(k̄×)2.

Proposition 1.11. Let f(x, y) ∈ k[x, y] be an irreducible polynomial in k̄[x, y] that is
nondegenerate with respect to ∆(f), and suppose f∗(x, y, z) has no singularities outside
{(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)}. Then

g(F ) = #{∆◦(f) ∩ Z2}.

Proof. See [2, Theorem 4.2].

Example 1.12. Let f(x, y) = y2−x3−Ax−B, with A,B ∈ k, and −16(4A3+27B2) ̸= 0.
Then f(x, y) is irreducible in k̄[x, y], and ∂∆(f) has the three edges γ1 = [(0, 0), (3, 0)],
γ2 = [(0, 0), (0, 2)], and γ3 = [(0, 2), (3, 0)]. We have

fγ1(x, y) = −x3 −Ax−B,

fγ2(x, y) = y2 −B,

fγ3(x, y) = y2 − x3.

The polynomial f(x, y) is not divisible by x or y, and the fact that the discriminant of
x3+Ax+B is nonzero implies that f is nondegenerate with respect to γ1. By Remark 1.10,
f is also nondegenerate with respect to the edges γ2 and γ3. Thus f(x, y) is nondegenerate,
and f∗(x, y, z) has no singularities at all, so Proposition 1.11 implies that

g(f) = #{∆◦(f) ∩ Z2} = #{(1, 1)} = 1.
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Example 1.13. Let f(x, y) = x2 + y2 − 1 − cx2y2 with c ̸= 0, 1. Then f(x, y) is irre-
ducible in k̄[x, y], and ∂∆(f) has the four edges γ1 = [(0, 0), (2, 0)], γ2 = [(0, 0), (0, 2)],
γ3 = [(0, 2), (2, 2)], and γ4 = [(2, 0), (2, 2)]. We have

fγ1(x, y) = x2 − 1,

fγ2(x, y) = y2 − 1,

fγ3(x, y) = y2 − cx2y2,

fγ4(x, y) = x2 − cx2y2.

The polynomial f(x, y) is not divisible by x or y and Remark 1.10 applies to all four fγi , thus
f is nondegenerate. The homogenized polynomial f∗(x, y, z) is singular only at (0 : 1 : 0)
and (1 : 0 : 0), so f satisfies the hypothesis of Proposition 1.11 and

g(F ) = #{∆◦(F ) ∩ Z2} = #{(1, 1)} = 1.
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