18.783 Elliptic Curves Course Outline, Fall 2023

Below is the sequence of topics planned for the course. Each corresponds to roughly a week of lectures (three hours), but some will be slightly less.

1. Introduction

elliptic curves, the group law, Weierstrass and Edwards equations.

2. Efficient computation

integer arithmetic, finite field arithmetic, root-finding, polynomial factorization.

3. Isogenies and endomorphisms

the Frobenius endomorphism, division polynomials, Hasse's theorem.

4. Elliptic curves over \mathbb{F}_q

point counting, baby-steps giant-steps, Schoof's algorithm.

5. The discrete logarithm problem

ECEDH, Pollard rho, Pohlig-Hellman, generic lower bounds, index calculus.

6. Integer factorization and primality proving

Lenstra ECM, Goldwasser-Killian ECPP, Montgomery curves.

7. Endomorphism rings

the dual isogeny, quadratic orders, quaternion algebras, supersingular curves.

8. Elliptic curves over \mathbb{C}

elliptic functions, Eisenstein series, the Weierstrass \wp -function, complex tori, the j-function, the uniformization theorem, isogenies.

9. Modular curves

congruence subgroups, Riemann surfaces, modular functions.

10. The theory of complex multiplication

ring class fields, Hilbert class polynomials, the CM method.

11. Isogeny graphs

isogeny volcanoes, supersingular isogeny graphs, isogeny-based cryptography.

12. Divisors and pairings

divisor class groups, pairings, Miller's algorithm, pairing-based cryptography.

13. Elliptic curves over Q

Mordell's theorem, 2-descent, Weil-Châtelet, Selmer, and Shafarevich-Tate groups.

14. L-functions

Modular forms, modularity, the Birch and Swinnerton-Dyer conjecture.