
18.783 Elliptic Curves Fall 2023

Problem Set #9 Due: 11/20/2023

Description: These problems are related to the material covered in Lectures 15–17.

Instructions: Pick any combination of problems to solve that sums to 100 points. Your
solutions are to be written up in latex and submitted as a pdf-file to Gradescope.

Collaboration is permitted/encouraged, but you must identify your collaborators or
your group on pset partners, as well any references you consulted that are not listed in
the syllabus or lecture notes. If there are none write “Sources consulted: none” at the
top of your solutions. Note that each student is expected to write their own solutions;
it is fine to discuss the problems with others, but your writing must be your own.

The first person to spot each non-trivial typo/error in the problem sets or lecture
notes will receive 1-5 points of extra credit.

In cases where your solution involves writing code, please either include your code
in your write up (as part of the pdf), or the name of a notebook in your 18.783 CoCalc
project containing you code (please use a separate notebook for each problem).

Problem 1. Complex multiplication (49 points)

Let τ = (1 +
√
−7)/2. In problem 1 of Problem Set 8 you computed j(τ) = −3375. In

problem 3 of Problem Set 7 you proved that the endomorphism ring of the elliptic curve
y2 = x3 − 35x− 98 with j-invariant −3375 is equal to [1, τ ], the maximal order (ring of
integers) of Q(

√
−7). Let us now set g2 := −4(−35) = 140 and g3 := −4(−98) = 392

and work with the isomorphic elliptic curve E/C defined by

y2 = 4x3 − g2x− g3,

which is isomorphic to y2 = x3 − 35x− 98.
We should note that g2([1, τ ]) and g3([1, τ ]) are not equal to 140 and 392, but there

is a lattice L homothetic to [1, τ ] for which g2(L) = 140 and g3(L) = 392 (you computed
this lattice L in problem 2 of Problem Set 8). In particular, τL ⊆ L, thus τ satisfies
condition (1) of Theorem 16.4. The goal of this problem is to compute the polynomials
u, v ∈ C[x] for which condition (2) of Theorem 16.4 holds, and the endomorphism φ for
which condition (3) of Theorem 16.4 holds, and to explicitly confirm that the diagram

C/L E(C)

C/L E(C)

Φ

τ φ

Φ

commutes, where τ denotes the multiplication-by-τ map z 7→ τz.
Recall that the Weierstrass ℘-function satisfying the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 (1)

has a Laurent series expansion about 0 of the form ℘(z) = z−2 +
∑∞

n=1 a2nz
2n.
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(a) Use g2 and g3 to determine a2 and a4, and then determine a6 by comparing coeffi-
cients in the Laurent expansions of both sides of (1).

We now wish to compute the polynomials u, v ∈ C[x] for which

℘(τz) =
u
(
℘(z)

)
v
(
℘(z)

) ,
as in condition (2) of Theorem 16.4. Following Corollary 16.5, we have N(τ) = τ τ̄ = 2,
so deg u = 2 and deg v = 1. We can make u = x2 + ax + b monic, and with v = cx + d
we must have

(c℘(z) + d)℘(τz) = ℘(z)2 + a℘(z) + b (2)

(b) Use (2) to determine the coefficients a, b, c, d, expressing your answers in terms of τ .
It will be convenient to work in the subfield K = Q(τ), rather than C. To define
the field K and the polynomial ring K[x] in Sage, use

RQ.<w>=PolynomialRing(QQ)
K.<tau>=NumberField(wˆ2-w+2)
RK.<x>=PolynomialRing(K)

Once you have determined a, b, c, d ∈ K, you can verify u, v ∈ K[x] via1

RL.<z>=LaurentSeriesRing(K,100)
wp=EllipticCurve([-35,-98]).weierstrass_p(100).change_ring(K)
assert wp(tau*z) == u(wp(z))/v(wp(z))

(c) Following the proof of Theorem 16.4, construct polynomials s, t ∈ K[x] that satisfy

℘′(τz) =
s
(
℘(z)

)
t
(
℘(z)

)℘′(z).
You can verify your results in Sage via

wpp = wp.derivative()
assert wpp(tau*z) == s(wp(z))/t(wp(z))*wpp(z)

(d) Now let φ =
(u(x)
v(x) ,

s(x)
t(x) y

)
. Use Sage to verify that φ is an endomorphism by checking

that its coordinate functions satisfy the curve equation y2 = 4x3 − g2x− g3.

The symbolic verifications in parts (b) and (d) confirm that Φ(τz) = φ(Φ(z)), showing
that the diagram commutes (at least for the first 100 terms in the Laurent expansion
of ℘(z)). But we would like to explicitly check this for some specific values of z ∈ C.
In order to do this in Sage, we need to redefine τ and the polynomials u, v, s, t over C,
rather than K. You can use the following Sage script to do this:

R.<X>=PolynomialRing(CC)
pi = K.embeddings(CC)[0]
tauC = pi(tau)
def coerce(f,pi,X):

c = f.coefficients(sparse=False)

1Sage effectively computes ℘(z) using y2 = 4x3 − g2x− g3 when we define E : y2 = x3 +Ax+B with
g2 = −4A and g3 = −4B.
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return sum([pi(c[i])*Xˆi for i in range(len(c))])
uC = coerce(u,pi,X)
vC = coerce(v,pi,X)
sC = coerce(s,pi,X)
tC = coerce(t,pi,X)

(e) Pick three “random” nonzero complex numbers z1, z2, z3 of norm less than 0.1 (they
need to be close to 0 in order for the Laurent series of ℘(x) to converge quickly).
You can approximate the point P1 = Φ(z1) =

(
℘(z1), ℘′(z1)

)
on the elliptic curve

y2 = 4x3 − g2x− g3 in Sage using2

wp = EllipticCurve([CC(-35),CC(-98)]).weierstrass_p(100)
wpp = wp.derivative()
P1=(wp.laurent_polynomial()(z1),wpp.laurent_polynomial()(z1))

For i = 1, 2, 3, compute the points Pi = Φ(zi) and Qi = Φ(τzi) (remember to use
the embedding of τ in C). Check that the points all approximately satisfy the curve
equation y2 = 4x3 − g2x− g3 (if not, use zi with smaller norms). Then verify that
Qi and φ(Pi) are approximately equal in each case. Report the values of zi, Pi, Qi
and φ(Pi).

Problem 2. Binary quadratic forms (49 points)

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables:

f(x, y) = ax2 + bxy + cy2,

which we identify by the coefficient vector (a, b, c). We are interested in a particular set of
binary quadratic forms, those that are integral (a, b, c ∈ Z), primitive (gcd(a, b, c) = 1),
and positive definite (b2− 4ac < 0 and a > 0). Henceforth we shall use the word form to
refer to an integral, primitive, positive definite, binary quadratic form. The discriminant
of a form is the negative integer D = b2 − 4ac, which is evidently a square modulo 4.
We call such integers (imaginary quadratic) discriminants, and let F (D) denote the set
of forms with discriminant D.

(a) For each γ = ( s tu v ) ∈ SL2(Z) and f(x, y) ∈ F (D) define

fγ(x, y) := f(sx+ ty, ux+ vy).

Show that fγ ∈ F (D), and that this defines a right group action of SL2(Z) on the
set F (D) (this means f I = f and f (γ1γ2) = (fγ1)γ2).

Forms f and g are (properly) equivalent if g = fγ for some γ ∈ SL2(Z). In this
problem and the next, you will prove that the set cl(D) of SL2(Z)-equivalence classes of
F (D) forms a finite abelian group, and develop algorithms to compute in this group.

The group cl(D) is called the class group, and it plays a key role in the theory of
complex multiplication. Our first objective is to prove that cl(D) is finite, and to develop
an algorithm to enumerate unique representatives of its elements (which also allows us

2You need to use the laurent polynomial method in order to evaluate wp at a complex number.
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to determine its cardinality). We define the (principal) root τ of a form f = (a, b, c) to
be the unique root of f(x, 1) in the upper half plane:

τ =
−b+

√
D

2a
.

Recall that SL2(Z) acts on the upper half plane H via linear fractional transformations(
s t
u v

)
τ =

sτ + t

uτ + v
,

and that the set

F =
{
τ ∈ H : re(τ) ∈ [−1/2, 0] and |τ | ≥ 1

}
∪
{
τ ∈ H : re(τ) ∈ (0, 1/2) and |τ | > 1

}
is a fundamental region for H modulo the SL2(Z)-action.

(b) Prove that γ ∈ SL2(Z) acts compatibly on forms and their roots by showing that
if τ is the root of f , then γ−1τ is the root of fγ . Conclude that two forms are
equivalent if and only if their roots are equivalent.

A form f = (a, b, c) is said to be reduced if

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

(c) Prove that a form is reduced if and only if its root lies in the fundamental region F .
Conclude that each equivalence class in F (D) contains exactly one reduced form.

(d) Prove that if f is reduced then a ≤
√
|D|/3. Conclude that the set cl(D) is finite,

and show that in fact its cardinality h(D) satisfies h(D) ≤ |D|/3. Prove that F (D)
contains a unique reduced form (a, b, c) with a = 1, and conclude that h(−3) =
h(−4) = 1.

The positive integer h(D) is called the class number of the discriminant D. The
bound h(D) ≤ |D|/3 is a substantial overestimate. In fact, h(D) = O(|D|1/2 log |D|), but
proving this requires some analytic number theory that is beyond the scope of this course.
Under the generalized Riemann hypothesis one can show h(D) = O(|D|1/2 log log |D|).

(e) Give an algorithm to enumerate the reduced forms in F (D). Using the upper bound
h(D) = O(|D|1/2 log |D|), prove that your algorithm runs in O(|D|M(log |D|)) time.

(f) Implement your algorithm and use it to enumerate the five reduced forms in F (−103)
and the six reduced forms in F (−396). Then use it to compute h(D) for the first
three discriminants D < −N , where N is the integer formed by the first four digits
of your student ID.

Problem 3. The class group (98 points)

In Problem 2 we proved that cl(D) is a finite set. In this problem you will prove that it
is an abelian group, and develop an algorithm for computing the group operation.

To each form f(x, y) = ax2 + bxy + cy2 in F (D) with root τ = (−b+
√
D)/(2a), we

associate the lattice L(f) = L(a, b, c) = a[1, τ ].
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(a) Show that two forms f, g ∈ F (D) are equivalent if and only if the lattices L(f) and
L(g) are homothetic (use may use part (b) of problem 2 if you wish).

For any lattice L, the order of L is the set

O(L) = {α ∈ C : αL ⊆ L}.

(b) Prove that either O(L) = Z or O(L) is an order in an imaginary quadratic field,
and that homothetic lattices have the same order. Prove that if L is the lattice of
a form in F (D), then O(L) is the order of discriminant D in the field K = Q(

√
D).

For the rest of this problem let O denote the (not necessarily maximal) imaginary
quadratic order of discriminant D, which may be represented as a lattice [1, ω], where ω
is an algebraic integer whose minimal polynomial x2+bx+c has discriminant b2−4c = D.

Recall that an (integral) O-ideal a is an additive subgroup of O that is closed under
multiplication by O. Every O-ideal a is necessarily a sublattice of O, and its norm
N(a) is the index [O : a] = |O/a|. An O-ideal a is said to be proper if O(a) = O. In
Lecture 18 we showed that a is proper if and only if it is invertible as a fractional ideal,
which explains our interest in this property. Note that we always have O ⊆ O(a), so
when O is maximal every nonzero O-ideal is proper.

(c) Prove that if L(a, b, c) = a[1, τ ] is the lattice of a form in F (D), then L is a proper
O-ideal of norm a, where O = O(L) = [1, aτ ].

(d) Conversely prove that every proper O-ideal a is homothetic to the lattice of a form
in F (D). Show that the assumption that a is proper is necessary by giving an explicit
example of an O-ideal a that is not proper (so by (c) it cannot be homothetic to the
lattice of a form in F (d)).

(e) Prove that if the norm of a is relatively prime to the conductor u = [OK : O] of O
then a is proper. Give an explicit example showing that the converse is not true.

The product of two lattices [ω1, ω2] and [ω3, ω4] in C is the additive group generated
by {ω1ω3, ω1ω4, ω2ω3, ω2ω4}.

(f) Show that, in general, the product of two lattices need not be a lattice, but the
product of two lattices that are O-ideals is a lattice.

(g) Let cl(O) denote the set of equivalence classes (under homothety) of lattices that
are proper O-ideals. Prove that the lattice product makes cl(O) into an abelian
group. Conclude that the corresponding operation on the equivalence classes of
F (D) makes cl(D) into an abelian group that is isomorphic to cl(O).

To do explicit computations in cl(D) we need to translate the product operation on
lattices L(f1) and L(f2) into a corresponding product operation on forms f1, f2 ∈ F (D).
This is known as composition of forms, and is performed as follows. If f1 = (a1, b1, c1)
and f2 = (a2, b2, c2) are forms in F (D), then let s = (b1+b2)/2 (this is an integer because
b1, b2 and D all have the same parity). Use the extended Euclidean algorithm (twice)
to compute integers u, v, w, and d such that ua1 + va2 + ws = d = gcd(a1, a2, s). The
composition of f1 and f2 is then given by

f1 ∗ f2 = (a3, b3, c3) =

(
a1a2

d2
, b2 +

2a2

d
(v(s− b2)− wc2),

b23 −D
4a3

)
.
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It is a straight-forward but tedious task to verify that this composition formula satisfies
L(f1 ∗ f2) = L(f1) ∗ L(f2); you are not required to do this.

(h) Verify that the inverse of (a, b, c) is (a,−b, c) and that the unique reduced from with
a = 1 acts as the identity (see Problem 2 for the definition of a reduced form).

Unfortunately, even if f1 and f2 are reduced forms, the composition of f1 and f2 need
not be reduced. In order to compute in cl(D) effectively, we need a reduction algorithm.
Recall the matrices S =

(
0 −1
1 0

)
and T = ( 1 1

0 1 ) that generate SL2(Z).

(i) Let f be the form (a, b, c). Compute the forms fS , fT
m

, and fT
−m

, for a positive
integer m.

A form (a, b, c) with −a < b ≤ a is said to be normalized.

(j) Show that for any form f there is an integer m such that fT
m

is normalized, and
give an explicit formula for m. Let us call fT

m
the normalization of f . Now let

f = (a, b, c) be a normalized form and prove the following:

(a) If a <
√
|D|/2 then f is reduced.

(b) If a <
√
|D| and f is not reduced, then the normalization of Sf is reduced.

(c) If a ≥
√
|D| then the normalization (a′, b′, c′) of Sf has a′ ≤ a/2.

(k) Give an algorithm to compute the reduction of a form f in F (D), and bound its
complexity as a function of n = log |D|, assuming that its coefficients are O(n) bits
in size. Then bound the complexity of computing the reduction of the product of
two reduced forms (this corresponds to performing a group operation in cl(D)).3

(l) Implement your algorithm and then use it to compute the reduction of a form
(a, b, c) ∈ F (D), with a equal to the least prime greater than |D|2 for which (Da ) = 1.
Do this for the discriminants D = −103 and D = −396, and for the first three
discriminants D < −N , where N is the first four digits of your student ID. For the
largest |D|, list the sequence of normalized forms computed during the reduction.

Problem 4. Subgroups of GL2(F`) (49 points)

Let E be an elliptic curve defined over Q. Recall that for each integer n > 1, the n-
torsion subgroup of E(Q) is a rank 2 (Z/nZ)-module we denote E[n]. As explained in
Problem Sets 3 and 6, the action of the absolute Galois group GQ := Gal(Q/Q) on the
coordinates of points gives rise to an action on the set E(Q) that commutes with the
group law. Hence the GQ-action preserves E[n] and gives rise to a linear representation
of the absolute Galois group

ρE,n : GQ → Aut(E[n]) ' GL2(Z/nZ),

which we call the mod-n Galois representation attached to E. In this problem we restrict
our attention to prime n = `, in which case we have following theorem of Serre.

3A quasi-linear bound is known [1], but your bound does not need to be this tight. However it should
be polynomial in n.
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Theorem (Serre, 1972). Let E be an elliptic curve over Q for which End(EQ) = Z. For
all but finitely many primes `, the image of the mod-` Galois representation is surjective:

ρE,`(GQ) = GL2(F`).

Remark. For an elliptic curve over Q (or any number field) we know that End(EQ) is
either Z or an order in an imaginary quadratic field. The latter case is quite special: it
applies to only 13 Q-isomorphism classes of elliptic curves over Q, corresponding to the
13 imaginary quadratic orders of class number one.4

Remark. It is conjectured that Serre’s theorem actually applies to all primes ` > 37
(independent of E). There is ample evidence and some recent progress toward a proof
of this conjecture, but it remains a major open question.

A key component of the proof of Serre’s theorem is understanding the maximal
subgroups of GL2(F`) In order to discuss subgroups of GL2(F`) in a basis-free manner, it
is often convenient to write GL(V ) where V is a 2-dimensional vector space over F` and
GL(V ) denotes its group of automorphisms. In this problem you will give a complete
classification of the maximal subgroups of GL2(V ).

Let L1 and L2 be distinct 1-dimensional subspaces of V , which we can think of as
lines through the origin in V , and let Cs be the subgroup of GL(V ) that preserves both
L1 and L2 (individually, no swapping allowed).

(a) Show that for ` 6= 2, the subgroup Cs uniquely determines the lines L1, L2 ⊂ V (and
hence is equivalent to specifying two such lines).

We call such a C a split Cartan subgroup of GL(V ). If we choose a basis for V
compatible with the decomposition V = L1 ⊕ L2, we then have

Cs =

(
∗ 0
0 ∗

)
,

where ∗ denotes any element of F×` . Thus C '
(
F×`
)2

is an abelian group of order (`−1)2.
As an F`-vector space, F`2 ' F2

` ; but F`2 also has a multiplicative structure, and so
the action of the multiplicative group F×

`2
on F`2 ' V gives a cyclic subgroup Cns of

GL(V ) isomorphic to F×
`2

. Such a subgroup Cns is called a non-split Cartan subgroup.
We collectively refer to split and non-split Cartan subgroups as Cartan subgroups.

(b) Show that for ` 6= 2, if we fix a quadratic non-residue ε ∈ F×` , then in an appropriate
basis we have

Cns =

{(
x εy
y x

)
: x, y ∈ F`, (x, y) 6= (0, 0)

}
.

(c) Show that the intersection of any two distinct Cartan subgroups (either split or
non-split) is the group of scalar matrices Z = ( z 0

0 z ) with z ∈ F×` .

(d) Show that any element s ∈ GL(V ) with ∆(s) = tr(s)2−4 ·det(s) 6= 0 is contained in
a unique Cartan subgroup, and determine a condition involving ∆(s) that specifies
the type of Cartan. Deduce that the union of all Cartan subgroups of GL(V ) is the
set of elements of order prime to `. (If you are stuck, look at part (h) below.)

4Elliptic curves E/Q with End(EQ) 6= Z are often said to have complex multiplication and called CM
curves, even though this is not strictly true: the extra endomorphisms are only defined over a quadratic
extension (it would be more correct to say these curves have “potential complex multiplication”).
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(e) Let N denote the normalizer of a Cartan subgroup C in GL(V ), that is all elements
s ∈ GL(V ) such that sCs−1 = C. Show that (N : C) = 2 and give an explicit
description of this group in the split and non-split cases separately.

It is easy to show that the group Z of scalar matrices forms the center of GL(V ).
We define PGL(V ) to be the quotient of GL(V ) by its center, so PGL(V ) := GL(V )/Z.
Let ϕ : GL(V )→ PGL(V ) denote the quotient map.

(f) Show that if C is a split (resp. non-split) Cartan subgroup, then ϕ(C) ⊂ PGL(V )
is cyclic of order `−1 (resp. `+1). Show that the image in PGL(V ) of a normalizer
of a Cartan subgroup is a dihedral group.5

By part (d) above, it remains to understand the elements of GL(V ) of order divisible
by `. A Borel subgroup B of GL(V ) is the group of automorphisms of V fixing a specified
line (through the origin). A Borel subgroup of GL(V ) has order `(`−1)2. After choosing
an appropriate basis, this has the form

B =

(
∗ ∗
0 ∗

)
.

(g) Show that any element s ∈ GL(V ) of order ` is conjugate to the matrix ( 1 1
0 1 ).

(h) Using the fact that SL(V ) is generated ( 1 1
0 1 ) and ( 1 0

1 1 ), deduce that any subgroup
of GL(V ) of order divisible by ` either lies in a Borel subgroup, or contains SL(V ).

Let k be any field. If H is a finite subgroup of PGL2(k) of order prime to the
characteristic of k that is not cyclic or dihedral, then H is isomorphic to either A4, S4,
or A5. (In the case k = C, this result is well known; these subgroups correspond
to the symmetry groups of the regular polyhedra: tetrahedron, cube/octahedron, and
icosahedron/dodecahedron, respectively.)

(i) Use parts (a) to (h) to prove the following classification theorem.

Theorem (Maximal subgroups of GL2(F`)). Let G be a subgroup of GL2(F`); let H
denote the image of G in PGL2(F`). Then one of the following holds:

1. G has order prime to ` and either:

(i) H is cyclic and G is contained in a Cartan subgroup of GL2(F`);
(ii) H is dihedral and G is contained in the normalizer of a Cartan subgroup C

of GL2(F`) but not in C;

(iii) H is isomorphic to A4, S4 or A5 and we call G exceptional;

2. G has order divisible by ` and either:

(iv) G is contained in a Borel subgroup;

(v) G contains SL2(F`).

Serre’s theorem states that except for elliptic curves E/Q with (potential) complex mul-
tiplication, for all but finitely many primes ` we are in case (v) of the classification above.
On later problem sets we will see that for ` 6= 2 this never happens if E has complex
multiplication, so the hypothesis End(EQ) = Z in Serre’s theorem is necessary.

5For this problem, the product of two cyclic groups of order 2 (the Klein group) is a dihedral group.
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Problem 5. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10
= “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also
estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

11/14 Riemann surfaces, modular curves

11/16 The modular equation

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.
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