18.783 Elliptic Curves Lecture 8

Andrew Sutherland

October 5, 2023

Schoof's algorithm

In 1985 René Schoof introduced a polynomial-time algorithm for computing $\# E\left(\mathbb{F}_{q}\right)$. Schoof's strategy is to compute the trace of Frobenius modulo many small primes ℓ.

Algorithm

Given an elliptic curve E over a finite field \mathbb{F}_{q} compute $\# E\left(\mathbb{F}_{q}\right)$ as follows:

1. Initialize $M \leftarrow 1$ and $t \leftarrow 0$.
2. While $M \leq 4 \sqrt{q}$, for increasing primes $\ell=2,3,5, \ldots$ that do not divide q :
2.1 Compute $t_{\ell}=\operatorname{tr} \pi \bmod \ell$.
2.2 Set $t \leftarrow\left(M\left(M^{-1} \bmod \ell\right) t_{\ell}+\ell\left(\ell^{-1} \bmod M\right) t\right) \bmod \ell M$ and then $M \leftarrow \ell M$.
3. If $t>M / 2$ then set $t \leftarrow t-M$.
4. Output $q+1-t$.

Step 2.2 uses an iterative CRT approach to ensure that $t \equiv \operatorname{tr} \pi_{E} \bmod M$ always holds. Hasse's theorem implies $t=\operatorname{tr} \pi_{E}$ after Step 3, so that $\# E\left(\mathbb{F}_{q}\right)=q+1-t$ in Step 4.

Preliminary complexity analysis

Let $\ell_{\max }$ be the largest prime ℓ for which the algorithm computes t_{ℓ}. The Prime Number Theorem (or even just Chebyshev's theorem) implies that

$$
\sum_{\text {primes } \ell \leq x} \log \ell \sim x
$$

as $x \rightarrow \infty$, and therefore

$$
\ell_{\max } \sim \log 4 \sqrt{q} \sim \frac{1}{2} n=O(n)
$$

where $n=\log q$, so we need $O\left(\frac{n}{\log n}\right)$ primes ℓ.
The cost of Step 2.2 is bounded by $O(\mathrm{M}(n) \log n)$, thus if we can compute t_{ℓ} in Step 2.1 in time bounded by a polynomial in n and ℓ, we have a polynomial-time algorithm.

If $f(n)$ is the cost of Step 2.1 the total complexity is $O(n \mathrm{M}(n)+n f(n) / \log n)$.

Computing t_{2}

Assuming q is odd (which we do), $t=q+1-\# E\left(\mathbb{F}_{q}\right)$ is divisible by 2 if and only if $\# E\left(\mathbb{F}_{q}\right)$ is divisible by 2 , equivalently, if and only if $E\left(\mathbb{F}_{q}\right)$ contains a point of order 2.

If E has Weierstrass equation $y^{2}=f(x)$, then the points of order 2 in $E\left(\mathbb{F}_{q}\right)$ are precisely those of the form $\left(x_{0}, 0\right)$, where $x_{0} \in \mathbb{F}_{q}$ is a root $f(x)$.

We can thus compute $t_{2}:=\operatorname{tr} \pi_{E} \bmod 2$ as

$$
t_{2}= \begin{cases}0 & \text { if } \operatorname{deg}\left(\operatorname{gcd}\left(f(x), x^{q}-x\right)\right)>0 \\ 1 & \text { otherwise }\end{cases}
$$

This is a deterministic computation (we need randomness to efficiently find the roots of $g(x)$, but we can efficiently count them deterministically). It takes $O(n \mathrm{M}(n))$ time.

The characteristic polynomial of the Frobenius endomorphism

The Frobenius endomorphism $\pi_{E} \in \operatorname{End}(E)$ satisfies its characteristic equation

$$
\pi_{E}^{2}-t \pi_{E}+q=0
$$

with $t=\operatorname{tr} \pi$ and $q=\operatorname{deg} \pi$. Restricting to the ℓ-torsion subgroup $E[\ell]$ yields

$$
\begin{equation*}
\pi_{\ell}^{2}-t_{\ell} \pi_{\ell}+q_{\ell}=0 \tag{1}
\end{equation*}
$$

which we view as an identity in $\operatorname{End}(E[\ell])$. Here $t_{\ell} \equiv t \bmod \ell$ and $q_{\ell} \equiv q \bmod \ell$ correspond to restrictions of the scalar multiplication endomorphisms $[t],[q] \in \operatorname{End}(E)$.

But we can also compute q_{ℓ} as

$$
q_{\ell}=q_{\ell} \cdot[1]_{\ell}=[1]_{\ell}+\cdots+[1]_{\ell}
$$

using double-and-add, provided that we know how to explicitly compute in $\operatorname{End}(E[\ell])$.

Computing the trace of Frobenius modulo ℓ

Our strategy to compute t_{ℓ} is simple: for $c=0,1, \ldots, \ell-1$ compute

$$
\pi_{\ell}^{2}-c \pi_{\ell}+q_{\ell}
$$

and check whether it is equal to $0($ as an element of $\operatorname{End}(E[\ell])$).
The following lemma shows that whenever this occurs we must have $c=t_{\ell}$.

Lemma

Let E / \mathbb{F}_{q} be an elliptic curve with Frobenius endomorphism π, let ℓ be a prime not dividing q, and let $P \in E[\ell]$ be nonzero. Suppose that for some integer c the equation

$$
\pi_{\ell}^{2}(P)-c \pi_{\ell}(P)+q_{\ell}(P)=0
$$

holds. Then $c \equiv t_{\ell}=\operatorname{tr} \pi \bmod \ell$.

Arithmetic in $\operatorname{End}(E[\ell])$ for odd primes ℓ

Let $h=\psi_{\ell}(x)$ be the ℓ th division polynomial of $E: y^{2}=f(x)=x^{3}+A x+B$, whose roots are the x-coordinates of the nonzero elements of $E[\ell]$. To represent elements of $\operatorname{End}(E[\ell])$ as rational maps, we work in the ring

$$
\mathbb{F}_{q}[x, y] /\left(h(x), y^{2}-f(x)\right)
$$

We have

$$
\begin{aligned}
\pi_{\ell} & =\left(x^{q} \bmod h(x), y^{q} \bmod \left(h(x), y^{2}-f(x)\right)\right) \\
& =\left(x^{q} \bmod h(x),\left(f(x)^{(q-1) / 2} \bmod h(x)\right) y\right), \\
{[1]_{\ell} } & =(x \bmod h(x),(1 \bmod h(x)) y)
\end{aligned}
$$

We shall represent elements of $\operatorname{End}(E[\ell])$ in the form $(a(x), b(x) y)$, where $a, b \in \mathbb{F}_{q}[x] /(h(x))$ are uniquely represented as polynomials in $\mathbb{F}_{q}[x]$ reduced modulo h.

Multiplication in $\operatorname{End}(E[\ell])$

Given endomorphisms $\alpha_{1}, \alpha_{2} \in \operatorname{End}(E[\ell])$ represented as

$$
\begin{aligned}
& \alpha_{1}=\left(a_{1}(x), b_{1}(x) y\right), \\
& \alpha_{2}=\left(a_{2}(x), b_{2}(x) y\right),
\end{aligned}
$$

their product $\alpha_{3}=\alpha_{1} \alpha_{2}$ in $\operatorname{End}(E[\ell])$ is the composition $\alpha_{3}=\alpha_{1} \circ \alpha_{2}$, which may we explicitly compute as

$$
\begin{aligned}
\alpha_{3} & =\left(a_{3}(x), b_{3}(x) y\right) \\
& =\left(a_{1}\left(a_{2}(x)\right), b_{1}\left(a_{2}(x)\right) b_{2}(x) y\right)
\end{aligned}
$$

with $a_{3}(x)$ and $b_{3}(x)$ uniquely represented by their reductions modulo $h(x)$.

Addition in $\operatorname{End}(E)[\ell])$

Given $\alpha_{1}=\left(a_{1}(x), b_{1}(x) y\right), \alpha_{2}=\left(a_{2}(x), b_{2}(x) y\right)$, we want to compute $\alpha_{3}=\alpha_{1}+\alpha_{2}$. For non-opposite affine points $\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$ the group law on E tells us

$$
\begin{gathered}
x_{3}=m^{2}-x_{1}-x_{2}, \quad y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}, \\
m= \begin{cases}\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \text { if } x_{1} \neq x_{2}, \\
\frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } x_{1}=x_{2} .\end{cases}
\end{gathered}
$$

Plugging in $x_{1}=a_{1}(x), x_{2}=a_{2}(x), y_{1}=b_{1}(x) y, y_{2}=b_{2}(x) y$, we obtain

$$
m(x, y)= \begin{cases}\frac{b_{1}(x)-b_{2}(x)}{a_{1}(x)-a_{2}(x)} y=r(x) y & \text { if } x_{1} \neq x_{2} \\ \frac{3 a_{1}(x)^{2}+A}{2 b_{1}(x) y}=\frac{3 a_{1}(x)^{2}+A}{2 b_{1}(x) f(x)} y=r(x) y & \text { if } x_{1}=x_{2}\end{cases}
$$

Now $m(x, y)^{2}=(r(x) y)^{2}=r(x)^{2} f(x)$, so $\alpha_{1}+\alpha_{2}=\alpha_{3}=\left(a_{3}(x), b_{3}(x) y\right)$ with

$$
a_{3}=r^{2} f-a_{1}-a_{2}, \quad b_{3}=r\left(a_{1}-a_{3}\right)-b_{1} .
$$

Dealing with zero divisors in $\mathbb{F}_{q}[x] /(h)$

If the denominator of $r=u / v$ is invertible in $\mathbb{F}_{q}[x] /(h(x))$ we can write $r=u v^{-1} \bmod h$ and put $\alpha_{3}=\left(a_{3}(x), b_{3}(x) y\right)$ in our desired form, with $a_{3}, b_{3} \in \mathbb{F}_{q}[x] /(h(x))$ uniquely represented as polynomials in $\mathbb{F}_{q}[x]$ reduced modulo h.

But this may not be possible! The ring $\mathbb{F}_{q}[x] /(h(x))$ is not necessarily a field.
At first glance this might appear to be a problem, but in fact it can only help us. If v is not invertible in $\mathbb{F}_{q}[x] /(h(x))$ then $\operatorname{gcd}(v, h)$ is a nontrivial factor of h (because we must have $\operatorname{deg} v<\operatorname{deg} h$).

Our strategy in this situation is to replace h by $g=\operatorname{gcd}(v, h)$ and compute t_{ℓ} by working in the smaller ring $\mathbb{F}_{q}[x] /(g(x))$. This will speed things up!

The lemma implies that we can restrict our attention to the action of π_{ℓ} on the subset of points $P \in E[\ell]$ whose x-coordinates are roots of $g(x)$.

Schoof's algorithm for computing the trace of Frobenius modulo ℓ

Algorithm

Given $E: y^{2}=f(x)$ over \mathbb{F}_{q} and an odd prime ℓ, compute t_{ℓ} as follows:

1. Compute the ℓ th division polynomial $h=\psi_{\ell} \in \mathbb{F}_{q}[x]$ for E.
2. Compute $\pi_{\ell}=\left(x^{q} \bmod h,\left(f^{(q-1) / 2} \bmod h\right) y\right)$ and $\pi_{\ell}^{2}=\pi_{\ell} \circ \pi_{\ell}$.
3. Use scalar multiplication to compute $q_{\ell}=q_{\ell}[1]_{\ell}$, and then compute $\pi_{\ell}^{2}+q_{\ell}$. (If a non-invertible denominator arises, update h and return to step 2).
4. Compute $0, \pi_{l}, 2 \pi_{l}, 3 \pi_{l}, \ldots, c \pi_{\ell}$, until $c \pi_{l}=\pi_{l}^{2}+q_{l}$.
(If a non-invertible denominator arises, update h and return to step 2).
5. Output $t_{\ell}=c$.

An implementation of this algorithm can be found in this Sage worksheet.

A few final remarks

- Factors of $h(x)$ necessarily arise when E admits a rational ℓ-isogeny. Elkies optimization of Schoof's algorithm exploits this fact, allowing us to work with polynomials of degree $(\ell-1) / 2$ rather than $\left(\ell^{2}-1\right) / 2$.
- Additional optimizations due to Atkin in the case where E does not admit a rational ℓ-isogeny lead the Schoof-Elkies-Atkin (SEA) algorithm.
- For cryptographic size primes the SEA algorithm takes a few seconds (or less). The current SEA record is a 16,000 -bit prime, far beyond the cryptographic range.
- Even Schoof's original algorithm can handle cryptographic size primes, but this was not widely recognized in the 1980's.
- Schoof's algorithm can be used to deterministically compute square roots of a fixed integer modulo a prime. This application was the motivation for Schoof's original paper.

