
18.783 Elliptic Curves
Lecture 8

Andrew Sutherland

October 5, 2023



Schoof’s algorithm
In 1985 René Schoof introduced a polynomial-time algorithm for computing #E(Fq).
Schoof’s strategy is to compute the trace of Frobenius modulo many small primes `.

Algorithm
Given an elliptic curve E over a finite field Fq compute #E(Fq) as follows:

1. Initialize M ← 1 and t← 0.
2. While M ≤ 4√q, for increasing primes ` = 2, 3, 5, . . . that do not divide q:

2.1 Compute t` = trπ mod `.
2.2 Set t←

(
M(M−1 mod `)t` + `(`−1 mod M)t

)
mod `M and then M ← `M .

3. If t > M/2 then set t← t−M .
4. Output q + 1− t.

Step 2.2 uses an iterative CRT approach to ensure that t ≡ trπE mod M always holds.
Hasse’s theorem implies t = trπE after Step 3, so that #E(Fq) = q + 1− t in Step 4.



Preliminary complexity analysis
Let `max be the largest prime ` for which the algorithm computes t`.
The Prime Number Theorem (or even just Chebyshev’s theorem) implies that∑

primes `≤x

log ` ∼ x

as x→∞, and therefore

`max ∼ log 4√q ∼ 1
2n = O (n) ,

where n = log q, so we need O
(

n
log n

)
primes `.

The cost of Step 2.2 is bounded by O(M(n) logn), thus if we can compute t` in Step
2.1 in time bounded by a polynomial in n and `, we have a polynomial-time algorithm.

If f(n) is the cost of Step 2.1 the total complexity is O(nM(n) + nf(n)/ logn).



Computing t2

Assuming q is odd (which we do), t = q + 1−#E(Fq) is divisible by 2 if and only if
#E(Fq) is divisible by 2, equivalently, if and only if E(Fq) contains a point of order 2.

If E has Weierstrass equation y2 = f(x), then the points of order 2 in E(Fq) are
precisely those of the form (x0, 0), where x0 ∈ Fq is a root f(x).

We can thus compute t2 := trπE mod 2 as

t2 =

0 if deg
(
gcd(f(x), xq − x)

)
> 0,

1 otherwise.

This is a deterministic computation (we need randomness to efficiently find the roots
of g(x), but we can efficiently count them deterministically). It takes O(nM(n)) time.



The characteristic polynomial of the Frobenius endomorphism
The Frobenius endomorphism πE ∈ End(E) satisfies its characteristic equation

π2
E − tπE + q = 0,

with t = trπ and q = deg π. Restricting to the `-torsion subgroup E [`] yields

π2
` − t`π` + q` = 0, (1)

which we view as an identity in End(E[`]). Here t` ≡ t mod ` and q` ≡ q mod `
correspond to restrictions of the scalar multiplication endomorphisms [t], [q] ∈ End(E).

But we can also compute q` as

q` = q` · [1]` = [1]` + · · ·+ [1]`

using double-and-add, provided that we know how to explicitly compute in End(E[`]).



Computing the trace of Frobenius modulo `

Our strategy to compute t` is simple: for c = 0, 1, . . . , `− 1 compute

π2
` − cπ` + q`

and check whether it is equal to 0 (as an element of End(E[`])).

The following lemma shows that whenever this occurs we must have c = t`.

Lemma
Let E/Fq be an elliptic curve with Frobenius endomorphism π, let ` be a prime not
dividing q, and let P ∈ E[`] be nonzero. Suppose that for some integer c the equation

π2
` (P )− cπ`(P ) + q`(P ) = 0

holds. Then c ≡ t` = trπ mod `.



Arithmetic in End(E[`]) for odd primes `

Let h = ψ`(x) be the `th division polynomial of E : y2 = f(x) = x3 +Ax+B,
whose roots are the x-coordinates of the nonzero elements of E[`]. To represent
elements of End(E[`]) as rational maps, we work in the ring

Fq [x, y] /(h(x), y2 − f(x)).

We have

π` =
(
xq mod h(x), yq mod (h(x), y2 − f(x))

)
=
(
xq mod h(x),

(
f(x)(q−1)/2 mod h(x)

)
y
)
,

[1]` =
(
x mod h(x),

(
1 mod h(x)

)
y
)

We shall represent elements of End(E[`]) in the form (a(x), b(x) y), where
a, b ∈ Fq[x]/(h(x)) are uniquely represented as polynomials in Fq[x] reduced modulo h.



Multiplication in End(E[`])

Given endomorphisms α1, α2 ∈ End(E[`]) represented as

α1 =
(
a1(x), b1(x)y

)
,

α2 =
(
a2(x), b2(x)y

)
,

their product α3 = α1α2 in End(E[`]) is the composition α3 = α1 ◦ α2, which may we
explicitly compute as

α3 =
(
a3(x), b3(x)y

)
= (a1(a2(x)), b1(a2(x))b2(x) y) ,

with a3(x) and b3(x) uniquely represented by their reductions modulo h(x).



Addition in End(E)[`])
Given α1 =

(
a1(x), b1(x)y

)
, α2 =

(
a2(x), b2(x)y

)
, we want to compute α3 = α1 + α2.

For non-opposite affine points (x3, y3) = (x1, y1) + (x2, y2) the group law on E tells us

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

m =


y1−y2
x1−x2

if x1 6= x2,

3x2
1+A

2y1
if x1 = x2.

Plugging in x1 = a1(x), x2 = a2(x), y1 = b1(x)y, y2 = b2(x)y, we obtain

m(x, y) =


b1(x)−b2(x)
a1(x)−a2(x)y = r(x)y if x1 6= x2,

3a1(x)2+A
2b1(x)y = 3a1(x)2+A

2b1(x)f(x) y = r(x)y if x1 = x2.

Now m(x, y)2 = (r(x)y)2 = r(x)2f(x), so α1 + α2 = α3 = (a3(x), b3(x)y) with

a3 = r2f − a1 − a2, b3 = r(a1 − a3)− b1.



Dealing with zero divisors in Fq[x]/(h)

If the denominator of r = u/v is invertible in Fq[x]/(h(x)) we can write
r = uv−1 mod h and put α3 =

(
a3(x), b3(x)y

)
in our desired form, with

a3, b3 ∈ Fq[x]/(h(x)) uniquely represented as polynomials in Fq[x] reduced modulo h.

But this may not be possible! The ring Fq[x]/(h(x)) is not necessarily a field.

At first glance this might appear to be a problem, but in fact it can only help us.
If v is not invertible in Fq[x]/(h(x)) then gcd(v, h) is a nontrivial factor of h
(because we must have deg v < deg h).

Our strategy in this situation is to replace h by g = gcd(v, h) and compute t` by
working in the smaller ring Fq[x]/(g(x)). This will speed things up!

The lemma implies that we can restrict our attention to the action of π` on the subset
of points P ∈ E[`] whose x-coordinates are roots of g(x).



Schoof’s algorithm for computing the trace of Frobenius modulo `

Algorithm
Given E : y2 = f(x) over Fq and an odd prime `, compute t` as follows:

1. Compute the `th division polynomial h = ψ` ∈ Fq[x] for E.
2. Compute π` = (xq mod h, (f (q−1)/2 mod h)y) and π2

` = π` ◦ π`.
3. Use scalar multiplication to compute q` = q`[1]`, and then compute π2

` + q`.
(If a non-invertible denominator arises, update h and return to step 2).

4. Compute 0, πl, 2πl, 3πl, . . . , cπ`, until cπl = π2
l + ql.

(If a non-invertible denominator arises, update h and return to step 2).
5. Output t` = c.

An implementation of this algorithm can be found in this Sage worksheet.

https://cocalc.com/AndrewVSutherland/18.783EllipticCurves2023/SchoofsAlgorithm


A few final remarks

• Factors of h(x) necessarily arise when E admits a rational `-isogeny. Elkies
optimization of Schoof’s algorithm exploits this fact, allowing us to work with
polynomials of degree (`− 1)/2 rather than (`2 − 1)/2.

• Additional optimizations due to Atkin in the case where E does not admit a
rational `-isogeny lead the Schoof-Elkies-Atkin (SEA) algorithm.

• For cryptographic size primes the SEA algorithm takes a few seconds (or less).
The current SEA record is a 16,000-bit prime, far beyond the cryptographic range.

• Even Schoof’s original algorithm can handle cryptographic size primes, but this
was not widely recognized in the 1980’s.

• Schoof’s algorithm can be used to deterministically compute square roots of a
fixed integer modulo a prime. This application was the motivation for Schoof’s
original paper.

https://www.jstor.org/stable/2007968

