18.783 Elliptic Curves Lecture 6

Andrew Sutherland

September 28, 2023

Lecture 5 recap

- Isogeny decomposition (in characteristic $p>0$): $\alpha=\alpha_{\text {sep }} \circ \pi^{n}$ for some $n \geq 0$.
- The separable degree is $\operatorname{deg}_{s} \alpha:=\operatorname{deg} \alpha_{\text {sep }}$, the inseparable degree is $\operatorname{deg}_{i} \alpha:=p^{n}$.
- \# $\operatorname{ker} \varphi=\# E[\alpha]:=\{P \in E(\bar{k}): \alpha(P)=0\}=\operatorname{deg}_{s} \alpha$.
- $\alpha=\beta \circ \gamma \Rightarrow \operatorname{deg} \alpha=\operatorname{deg} \beta \operatorname{deg} \gamma$ and $\operatorname{deg}_{*} \alpha=\operatorname{deg}_{*} \beta \operatorname{deg}_{*} \gamma$ for $*=s, i$.
- Every finite $G \leq E[\bar{k}]$ is the kernel of a separable isogeny that is unique up to isomorphism and can be explicitly constructed using Vélu's formulas.
- For $E: y^{2}=x^{3}+A x+B$ the multiplication-by- n map can be written in the form

$$
[n](x, y)=\left(\frac{\phi_{n}(x)}{\psi_{n}^{2}(x)}, \frac{\omega_{n}(x, y)}{\psi_{n}^{3}(x, y)}\right)
$$

where $\phi_{n}, \omega_{n}, \psi_{n} \in \mathbb{Z}[x, y, A, B]$ are given by explicit recurrence relations.

- $\operatorname{deg}[n]=n^{2}$ and $[n]$ is separable if and only if $n \perp p$.

The n-torsion subgroup of an elliptic curve

Theorem (Lecture 5)

The multiplication-by- $n \operatorname{map}[n]$ has degree n^{2} that is separable if and only if $n \perp p$.

Theorem

Let E / k be an elliptic curve over a field of characteristic p. For each prime ℓ we have

$$
E\left[\ell^{e}\right] \simeq \begin{cases}\mathbb{Z} / \ell^{e} \mathbb{Z} \oplus \mathbb{Z} / \ell^{e} \mathbb{Z} & \text { if } \ell \neq p \\ \mathbb{Z} / \ell^{e} \mathbb{Z} \text { or }\{0\} & \text { if } \ell=p\end{cases}
$$

When $E[\ell] \simeq\{0\}$ we say that E is supersingular, otherwise E is ordinary.

Corollary

Every finite subgroup of $E(\bar{k})$ can be written as the sum of two (possibly trivial) cyclic groups with at most one of order divisible by p.

The group of homomorphisms between elliptic curves

Let E_{1} / k and E_{2} / k be elliptic curves.

Definition

$\operatorname{Hom}\left(E_{1}, E_{2}\right)$ is the abelian group of morphisms $\alpha: E_{1} \rightarrow E_{2}$ under pointwise addition. Note that $\alpha \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ is defined over k (it is an arrow in the category of E / k).

Lemma

Let $\alpha, \beta \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$. If $\alpha(P)=\beta(P)$ for all $P \in E_{1}(\bar{k})$ then $\alpha=\beta$.
Proof: $\operatorname{ker}(\alpha-\beta)=E_{1}(\bar{k})$ is infinite so $\alpha-\beta=0$.

Lemma

For all $n \in \mathbb{Z}$ and $\alpha \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ we have $[n] \circ \alpha=n \alpha=\alpha \circ[n]$.
Proof: We have $([-1] \circ \alpha)(P)=-\alpha(P)=\alpha(-P)=(\alpha \circ[-1])(P)$ and $([n] \circ \alpha)(P)=n \alpha(P)=\alpha(P)+\cdots+\alpha(P)=\alpha(P+\cdots P)=\alpha(n P)=(\alpha \circ[n])(P)$.

The cancellation law for isogenies

For $\delta \in \operatorname{Hom}\left(E_{0}, E_{1}\right), \alpha, \beta \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ and $\gamma \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$ we have

$$
(\alpha+\beta) \circ \delta=\alpha \circ \delta+\beta \circ \delta \quad \text { and } \quad \gamma \circ(\alpha+\beta)=\gamma \circ \alpha+\gamma \circ \beta
$$

since these identities hold pointwise.

Lemma

Let $\delta: E_{0} \rightarrow E_{1}, \alpha, \beta: E_{1} \rightarrow E_{2}$, and $\gamma: E_{2} \rightarrow E_{3}$ be isogenies. Then

$$
\begin{array}{lll}
\gamma \circ \alpha=\gamma \circ \beta & \Longrightarrow \quad \alpha=\beta \\
\alpha \circ \delta=\beta \circ \delta & \Longrightarrow \quad \alpha=\beta
\end{array}
$$

Proof: Isogenies are surjective, so $\alpha, \beta, \gamma, \delta$ and their compositions not zero maps.
Then $\gamma \circ \alpha=\gamma \circ \beta \Rightarrow \gamma \circ \alpha-\gamma \circ \beta=0 \Rightarrow \gamma \circ(\alpha-\beta)=0 \Rightarrow \alpha-\beta=0 \Rightarrow \alpha=\beta$ and $\alpha \circ \delta=\beta \circ \delta \Rightarrow \alpha \circ \delta-\beta \circ \delta=0 \Rightarrow(\alpha-\beta) \circ \delta=0 \Rightarrow \alpha-\beta=0 \Rightarrow \alpha=\beta$.

The dual isogeny

Definition

Let $\alpha: E_{1} \rightarrow E_{2}$ be an isogeny of elliptic curves of degree n. The dual isogeny is the unique isogeny $\hat{\alpha}$ for which $\hat{\alpha} \circ \alpha=[n]$. We also define $[\hat{0}]:=0$.

Uniqueness follows from the cancellation law. Existence is nontrivial (see notes).

Lemma

(1) If $\hat{\alpha} \circ \alpha=[n]$ then $\alpha \circ \hat{\alpha}=[n]$, that is, $\hat{\hat{\alpha}}=\alpha$, and for $n \in \mathbb{Z}$ we have $[\hat{n}]=[n]$.
(2) For any $\alpha, \beta \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ we have $\widehat{\alpha+\beta}=\hat{\alpha}+\hat{\beta}$.
(3) For any $\alpha \in \operatorname{Hom}\left(E_{2}, E_{3}\right)$ and $\beta \in \operatorname{Hom}\left(E_{1}, E_{2}\right)$ we have $\widehat{\alpha \circ \beta}=\hat{\beta} \circ \hat{\alpha}$.

Proof: (1) $(\alpha \circ \hat{\alpha}) \circ \alpha=\alpha \circ(\hat{\alpha} \circ \alpha)=\alpha \circ[n]=[n] \circ \alpha$, and $[n] \circ[n]=\left[n^{2}\right]=[\operatorname{deg}[n]]$.
(2) Deferred to Lecture 23.
(3) $(\hat{\beta} \circ \hat{\alpha}) \circ(\alpha \circ \beta)=\hat{\beta} \circ[\operatorname{deg} \alpha] \circ \beta=[\operatorname{deg} \alpha] \circ \hat{\beta} \circ \beta=[\operatorname{deg} \alpha] \circ[\operatorname{deg} \beta]=[\operatorname{deg}(\alpha \circ \beta)]$.

The endomorphism ring of an elliptic curve

Definition

$\operatorname{End}(E)$ is the ring with additive group is $\operatorname{Hom}(E, E)$ and multiplication $\alpha \beta:=\alpha \circ \beta$. The additive identity is $0:=[0]$ and the multiplicative identity is $1:=[1]$. The distributive laws are verified pointwise.

Note that $\alpha \beta \neq 0$ whenever $\alpha, \beta \neq 0$ (by surjectivity), so $\operatorname{End}(E)$ has no zero divisors.

Lemma

The map $n \mapsto[n]$ defines an injective ring homomorphism $\mathbb{Z} \mapsto \operatorname{End}(E)$ that agrees with scalar multiplication.

Proof: $[m+n]=[m]+[n],[m n]=[m] \circ[n]$, and $m \neq 0 \Rightarrow[m] \neq 0$ (finite kernel), and we note that $([n] \alpha)(P)=[n](\alpha(P))=n \alpha(P)=(n \alpha)(P)$ for all $P \in E(\bar{k})$.

In $\operatorname{End}(E)$ we are thus free to replace $[n]$ with n (so $\alpha+n$ means $\alpha+[n]$, for example).

The trace of an an endomorphism

Lemma

For any $\alpha \in \operatorname{End}(E)$ we have $\alpha+\hat{\alpha}=1+\operatorname{deg} \alpha-\operatorname{deg}(1-\alpha)$.
Proof: $\operatorname{deg}(1-\alpha)=(\widehat{1-\alpha})(1-\alpha)=(1-\hat{\alpha})(1-\alpha)=1-(\alpha+\hat{\alpha})+\operatorname{deg}(\alpha)$.

Definition

The trace of $\alpha \in \operatorname{End}(E)$ is the integer $\operatorname{tr} \alpha=\alpha+\hat{\alpha}$.

Theorem

For all $\alpha \in \operatorname{End}(E)$ both α and $\hat{\alpha}$ are solutions to $x^{2}-(\operatorname{tr} \alpha) x+\operatorname{deg} \alpha=0$ in $\operatorname{End}(E)$.
Proof: $\alpha^{2}-(\operatorname{tr} \alpha) \alpha+\operatorname{deg} \alpha=\alpha^{2}-(\alpha+\hat{\alpha}) \alpha+\hat{\alpha} \alpha=0$ and similarly for $\hat{\alpha}$.

Restricting endomorphisms to $E[n]$

Definition

For any $\alpha \in \operatorname{End}(E)$ its restriction to $E[n]$ is denoted $\alpha_{n} \in \operatorname{End}(E[n])$.
Let $n \geq 1$ be coprime to the characteristic and let $E[n] \simeq \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}=\left\langle P_{1}, P_{2}\right\rangle$. Then we can view α_{n} as the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where

$$
\begin{aligned}
& \alpha\left(P_{1}\right)=a P_{1}+b P_{2} \\
& \alpha\left(P_{2}\right)=c P_{1}+d P_{2}
\end{aligned}
$$

The determinant and trace of this matrix do not depend on our choice of P_{1} and P_{2}.

Theorem

Let $\alpha \in \operatorname{End}(E)$ and let $n \geq 1$ be coprime to the characteristic. Then

$$
\operatorname{tr} \alpha \equiv \operatorname{tr} \alpha_{n} \bmod n \quad \text { and } \quad \operatorname{deg} \alpha \equiv \operatorname{det} \alpha_{n} \bmod n
$$

