18.783 Elliptic Curves Lecture 4

Andrew Sutherland

September 21, 2023

The function field of a curve

Definition

Let C / k be a plane projective curve $f(x, y, z)=0$ with $f \in k[x, y, z]$ nonconstant, homogeneous, and irreducible in $\bar{k}[x, y, z]$. The function field $k(C)$ is the set of equivalence classes of rational functions g / h such that:
(i) g and h are homogeneous polynomials in $k[x, y, z]$ of the same degree;
(ii) h is not divisible by f, equivalently, h is not an element of the ideal (f);
(iii) g_{1} / h_{1} and g_{2} / h_{2} are considered equivalent whenever $g_{1} h_{2}-g_{2} h_{1} \in(f)$.

Addition: $\frac{g_{1}}{h_{1}}+\frac{g_{2}}{h_{2}}=\frac{g_{1} h_{2}+g_{2} h_{1}}{h_{1} h_{2}}$, Multiplication $\frac{g_{1}}{h_{1}} \cdot \frac{g_{2}}{h_{2}}=\frac{g_{1} g_{2}}{h_{1} h_{2}}$, Inverse: $\left(\frac{g}{h}\right)^{-1}=\frac{h}{g}$. If $g \in(f)$ then $g / h=0$ in $k(C)$, so we don't define $(g / h)^{-1}$ in this case.

The field $k(C)$ is a transcendental extension of k (of transcendence degree 1).
(3) Pro tips: - Don't confuse $k(C)$ and $C(k)$. - Don't assume $k[x, y, z] /(f)$ is a UFD.

Evaluating functions in $k(C)$ at a point in $C(\bar{k})$

For $g / h \in k(C)$ with $\operatorname{deg} g=\operatorname{deg} h=d$ and any $\lambda \in k^{\times}$we have

$$
\frac{g(\lambda x, \lambda y, \lambda z)}{h(\lambda x, \lambda y, \lambda z)}=\frac{\lambda^{d} g(x, y, z)}{\lambda^{d} h(x, y, z)}=\frac{g(x, y, z)}{h(x, y, z)} \downarrow
$$

For any $P \in C(\bar{k})$ we have $f(P)=0$, so if $g_{1} / h_{1}=g_{2} / h_{2}$ with $h_{1}(P), h_{2}(P) \neq 0$, then $g_{1}(P) h_{2}(P)-g_{2}(P) h_{1}(P)=f(P)=0$, so $\left(g_{1} / h_{1}\right)(P)=\left(g_{2} / h_{2}\right)(P)$.

To evaluate $\alpha \in k(C)$ at $P \in C(\bar{k})$ we need to choose $\alpha=g / h$ with $h(P) \neq 0$.

Example

$f(x, y, z)=z y^{2}-x^{3}-z^{2} x, P=(0: 0: 1), \alpha=3 x z / y^{2}$. We have

$$
\alpha(P)=\frac{3 x z}{y^{2}}(0: 0: 1)=\frac{3 x z^{2}}{x^{3}+z^{2} x}(0: 0: 1)=\frac{3 z^{2}}{x^{2}+z^{2}}(0: 0: 1)=3
$$

Rational maps

Definition

We say that $\alpha \in k(C)$ is defined at $P \in C(\bar{k})$ if $\alpha=g / h$ with $h(P) \neq 0$.

Definition

Let C_{1} / k and C_{2} / k be projective plane curves. A rational map $\phi: C_{1} \rightarrow C_{2}$ is a triple $\left(\phi_{x}: \phi_{y}: \phi_{z}\right) \in \mathbb{P}^{2}\left(k\left(C_{1}\right)\right)$ such that for any $P \in C_{1}(\bar{k})$ where $\phi_{x}, \phi_{y}, \phi_{z}$ are defined and not all zero we have $\left(\phi_{x}(P): \phi_{y}(P): \phi_{z}(P)\right) \in C_{2}(\bar{k})$.

The rational map ϕ is defined at P if there exists $\lambda \in k\left(C_{1}\right)^{\times}$such that $\lambda \phi_{x}, \lambda \phi_{y}, \lambda \phi_{z}$ are defined and not all zero at P.

Rational maps (alternative approach)

Let $C_{1}: f_{1}(x, y, z)=0$ and $C_{2}: f_{2}(x, y, z)=0$ be projective curves over k. If $\psi_{x}, \psi_{z}, \psi_{z} \in k[x, y, z]$ are homogeneous of the same degree, not all in $\left(f_{1}\right)$, and $f_{2}\left(\psi_{x}, \psi_{y}, \psi_{z}\right) \in\left(f_{1}\right)$, then at least one and possibly all of

$$
\left(\psi_{x} / \psi_{z}: \psi_{y} / \psi_{z}: 1\right), \quad\left(\psi_{x} / \psi_{y}: 1: \psi_{z} / \psi_{y}\right), \quad\left(1: \psi_{y} / \psi_{x}: \psi_{z} / \psi_{x}\right)
$$

is a rational map $\psi: C_{1} \rightarrow C_{2}$. Call two such triples $\left(\psi_{x}: \psi_{y}: \psi_{z}\right]$ and $\left(\psi_{x}^{\prime}: \psi_{y}^{\prime}: \psi_{z}^{\prime}\right)$ equivalent if $\psi_{x}^{\prime} \psi_{y}-\psi_{x} \psi_{y}^{\prime}$ and $\psi_{x}^{\prime} \psi_{z}-\psi_{x} \psi_{z}^{\prime}$ and $\psi_{y}^{\prime} \psi_{z}-\psi_{y} \psi_{z}^{\prime}$ all lie in $\left(f_{1}\right)$. This holds in particular when $\psi_{*}^{\prime}=\lambda \psi_{*}$ for some nonzero homogeneous $\lambda \in k[x, y, z]$, so we can always remove any common factor of $\psi_{x}, \psi_{y}, \psi_{z}$.
Equivalent triples define the same rational map, and every rational map can be defined this way: if $\phi=\left(\frac{g_{x}}{h_{x}}: \frac{g_{y}}{h_{y}}: \frac{g_{z}}{h_{z}}\right)$ then take $\psi_{x}:=g_{x} h_{y} h_{z}, \psi_{y}:=g_{x} h_{x} h_{z}, \psi_{z}:=g_{x} h_{x} h_{y}$. The rational map given by $\left[\psi_{x}, \psi_{y}, \psi_{z}\right]$ is defined at $P \in C_{1}(\bar{k})$ whenever any of $\psi_{x}(P), \psi_{y}(P), \psi_{z}(P)$ is nonzero, in which case $\left(\psi_{x}(P): \psi_{y}(P): \psi_{z}(P)\right) \in C_{2}(\bar{k})$.

Morphisms

Definition

A morphism is a rational map $\phi: C_{1} \rightarrow C_{2}$ that is defined at every $P \in C_{1}(\bar{k})$.

Theorem

If C_{1} is a smooth projective curve then every rational map $\phi: C_{1} \rightarrow C_{2}$ is a morphism.
(Because when C_{1} is smooth its coordinate ring $k\left[C_{1}\right]$ is a Dedekind domain.)

Theorem

A morphism of projective curves is either surjective or constant.
(Because projective varieties are complete/proper.)
Projective curves are isomorphic if there is an invertible morphism $\phi: C_{1} \rightarrow C_{2}$.
We then have a bijection $C_{1}(\bar{k}) \rightarrow C_{2}(\bar{k})$, but this necessary condition is not sufficient!

An equivalence of categories

Every surjective morphism of projective of curves $\phi: C_{1} \rightarrow C_{2}$ induces an injective morphism $\phi^{*}: k\left(C_{2}\right) \rightarrow k\left(C_{1}\right)$ of function fields defined by $\alpha \mapsto \alpha \circ \phi$.

Theorem

The categories of smooth projective curves over k with surjective morphisms and function fields of transcendence degree one over k are contravariantly equivalent via the functor $C \mapsto k(C)$ and $\phi \mapsto \phi^{*}$.

Every curve C, even singular affine curves, has a function field (for plane curves $f(x, y)=0, k(C)$ is the fraction field of $k[C]:=k[x, y] /(f))$. The function field $k(C)$ is categorically equivalent to a smooth projective curve \tilde{C}, the desingularization of C.

One can construct \tilde{C} from C geometrically (using blow ups), but its existence is categorical, and in many applications the function field is all that matters.

Isogenies

Let E_{1}, E_{2} be elliptic curves over k, with distinguished points O_{1}, O_{2}.

Definition

An isogeny $\phi: E_{1} \rightarrow E_{2}$ is a surjective morphism that is also a group homomorphism.

Definition (apparently weaker but actually equivalent)

An isogeny $\phi: E_{1} \rightarrow E_{2}$ is a non-constant rational map with $\phi\left(O_{1}\right)=O_{2}$.
E_{1} and E_{2} are isomorphic if there are isogenies $\phi_{1}: E_{1} \rightarrow E_{2}$ and $\phi_{2}: E_{2} \rightarrow E_{1}$ whose composition is the identity (the isogenies ϕ_{1} and ϕ_{2} are then called isomorphisms).

Morphisms $\phi: E_{1} \rightarrow E_{1}$ with $\phi\left(O_{1}\right)=O_{1}$ are endomorphisms. Note that $E_{1} \rightarrow O_{1}$ is an endormophism, but it is not an isogeny (for us at least).

Endomorphisms that are isomorphisms are called automorphisms.

Examples of isogenies and endomorphisms

- The negation map $[-1]: P \mapsto-P$ defined by $(x: y: z) \mapsto(x:-y: z)$ is an isogeny, an endomorphism, an isomorphism, and an automorphism.
- For any integer n the multiplication by n map $[n]: P \mapsto n P$ is an endomorphism. It is an isogeny for $n \neq 0$ and an automorphism for $n= \pm 1$.
- For E / \mathbb{F}_{q} we have the Frobenius endomorphism $\pi_{E}:(x: y: z) \mapsto\left(x^{q}: y^{q}: z^{q}\right)$. It induces a group isomorphism $E\left(\overline{\mathbb{F}}_{q}\right) \rightarrow E\left(\overline{\mathbb{F}}_{q}\right)$, but it is not an isomorphism.
- For E / \mathbb{F}_{q} of characteristic p the map $\pi:(x: y: z) \mapsto\left(x^{p}: y^{p}: z^{p}\right)$ is an isogeny, but typically not an endomorphism. For $E: y^{2}=x^{3}+A x+B$ the image of π is the elliptic curve $E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p}$, which need not be isomorphic to E.

The multiplication-by-2 map

Let E / k be defined by $y^{2}=x^{3}+A x+B$ and let ϕ be the endomorphism $P \mapsto 2 P$. The doubling formula for affine $P=(x: y: 1) \in E(\bar{k})$ is given by

$$
\begin{aligned}
& \phi_{x}(x, y)=m(x, y)^{2}-2 x=\frac{\left(3 x^{2}+A\right)^{2}-8 x y^{2}}{4 y^{2}} \\
& \phi_{y}(x, y)=m(x, y)\left(x-\phi_{x}(x, y)\right)-y=\frac{12 x y^{2}\left(3 x^{2}+A\right)-\left(3 x^{2}+A\right)^{3}-8 y^{4}}{8 y^{3}}
\end{aligned}
$$

with $m(x, y):=\left(3 x^{2}+A\right) /(2 y)$. We then have $\phi:=\left(\psi_{x} / \psi_{z}: \psi_{y} / \psi_{z}: 1\right)$ with

$$
\begin{aligned}
& \psi_{x}(x, y, z)=2 y z\left(\left(3 x^{2}+A z^{2}\right)^{2}-8 x y^{2} z\right) \\
& \psi_{y}(x, y, z)=12 x y^{2} z\left(3 x^{2}+A z^{2}\right)-\left(3 x^{2}+A z^{2}\right)^{3}-8 y^{4} z^{2} \\
& \psi_{z}(x, y, z)=8 y^{3} z^{3}
\end{aligned}
$$

How do we evaluate this morphism at the point $O:=(0: 1: 0)$?

The multiplication-by-2 map

How do we evaluate this morphism at the point $O:=(0: 1: 0)$?
We can add any multiple of $f(x, y, z)=y^{2} z-x^{3}-A x z^{2}-B z^{3}$ to any of $\psi_{x}, \psi_{y}, \psi_{z}$; this won't change the morphism ϕ.

Replacing ψ_{x} by $\psi_{x}+18 x y z f$ and ψ_{y} by $\psi_{y}+\left(27 f-18 y^{2} z\right) f$, and simplifying yields

$$
\begin{aligned}
& \psi_{x}(x, y, z)=2 y\left(x y^{2}-9 B x z^{2}+A^{2} z^{3}-3 A x^{2} z\right) \\
& \psi_{y}(x, y, z)=y^{4}-12 y^{2} z(2 A x+3 B z)-A^{3} z^{4}+27 B z\left(2 x^{3}+2 A x z^{2}+B z^{3}\right)+9 A x^{2}\left(3 x^{2}+2 A z^{2}\right), \\
& \psi_{z}(x, y, z)=8 y^{3} z .
\end{aligned}
$$

Now $\phi(O)=\left(\psi_{x}(0,1,0): \psi_{y}(0,1,0): \psi_{z}(0,1,0)\right)=(0: 1: 0)=O$, as expected.

That wasn't particularly fun. (36) But there is a way to completely avoid this!

A standard form for isogenies

Lemma

Let $E_{1}: y^{2}=f_{1}(x)$ and $E_{2}: y^{2}=f_{2}(x)$ be elliptic curves over k and let $\alpha: E_{1} \rightarrow E_{2}$ be an isogeny. Then α can be put in the affine standard form

$$
\alpha(x, y)=\left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)} y\right),
$$

where $u, v, s, t \in k[x]$ are polynomials with $u \perp v$ and $s \perp t$.

Corollary

When $\alpha: E_{1} \rightarrow E_{2}$ is defined as above we necessarily have $v^{3} \mid t^{2}$ and $t^{2} \mid v^{3} f_{1}$.
It follows that $v(x)$ and $t(x)$ have the same set of roots in \bar{k}, and these roots are precisely the x-coordinates of the affine points in $E(\bar{k})$ that lie in the kernel of α. In particular, ker α is a finite subgroup of $E(\bar{k})$.

Degree and separability

Definition

Let $\alpha(x, y)=\left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)} y\right)$ be an isogeny in standard form.
The degree of α is $\operatorname{deg} \alpha:=\max (\operatorname{deg} u, \operatorname{deg} v)$.
We say that α is separable if $(u / v)^{\prime}$ is nonzero, otherwise α is inseparable.

Definition (equivalent)

Let $\alpha: E_{1} \rightarrow E_{2}$ be an isogeny, let $\alpha^{*}: k\left(E_{2}\right) \rightarrow k\left(E_{1}\right)$ be the corresponding embedding of function fields, and consider the field extension $k\left(E_{1}\right) / \alpha^{*}\left(k\left(E_{2}\right)\right)$.

The degree of α the degree of the field extension $k\left(E_{1}\right) / \alpha^{*}\left(k\left(E_{2}\right)\right)$.
We say that α is separable if $k\left(E_{1}\right) / \alpha^{*}\left(k\left(E_{2}\right)\right)$ is separable, otherwise α is inseparable.

Examples

- The standard form of the negation map $[-1]$ is $[-1](x, y)=(x,-y)$. It is separable and has degree 1 .
- The standard form of the multiplication-by-2 map [2] is

$$
[2](x, y)=\left(\frac{x^{4}-2 A x^{2}-8 B x+A^{2}}{4\left(x^{3}+A x+B\right)}, \frac{x^{6}+5 A x^{4}+20 B x^{3}-5 A^{2} x^{2}-4 A B x-A^{3}-8 B^{2}}{8\left(x^{3}+A x+B\right)^{2}} y\right) .
$$

It is separable and has degree 4 .

- The standard form of the Frobenius endomorphism of E / \mathbb{F}_{q} is

$$
\pi_{E}(x, y)=\left(x^{q},\left(x^{3}+A x+B\right)^{(q-1) / 2} y\right) .
$$

Note that we have used the curve equation to transform y^{q} (here q is odd). It is inseparable, because $\left(x^{q}\right)^{\prime}=q x^{q-1}=0$, and it has degree q.

