18.783 Elliptic Curves Lecture 3

Andrew Sutherland

September 14, 2023

Representing finite fields

For $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$ we use integers in [0, p-1] denoting elements of $\mathbb{Z}/p\mathbb{Z}$.

For $\mathbb{F}_q\simeq \mathbb{F}_p^d\simeq \mathbb{F}_p[x]/(x^d)$ we use vectors in \mathbb{F}_p^d denoting elements of $\mathbb{F}_p[x]/(x^d)$, which can view as elements of $\mathbb{F}_p[x]/(f)$ for some irreducible $f\in \mathbb{F}_p[x]$ of degree d. It does not matter which f we pick, but some choices are better than others.

This reduces all computation in finite fields to integer and polynomial arithmetic.

We should note that there are other choices. If $\mathbb{F}_q^{\times} = \langle r \rangle$ (so r is a primitive root), we could use 0 to denote 0 and $e \in [1, q-1]$ to denote r^e .

Integer arithmetic

Complexity of ring operations on n-bit integers:

addition/subtraction	O(n)
multiplication (FFT)	$O(n\log n)$

To multiply polynomials in $\mathbb{F}_p[x]$ we use Kronecker substitution.

Let $\hat{f}\in\mathbb{Z}[x]$ denote the lift of $f\in\mathbb{F}_p[x]$ to $\mathbb{Z}[x]$. We compute $h=fg\in\mathbb{F}_p[x]$ via

$$\hat{h}(2^m) = \hat{f}(2^m)\hat{g}(2^m)$$

with $m \ge 2 \lg p + \lg(d+1)$, where $d := \deg f$. The kth coefficient of h can be obtained by extracting the kth block of m bits from $\hat{h}(2^m)$ and reducing it modulo p.

All ring operations in $\mathbb{F}_p[x]$ can thus be reduced to ring operations in \mathbb{Z} , provided we know how to reduce integers modulo p.

Euclidean division

For positive integers a,b we want to compute the unique $q,r\geq 0$ for which

$$a = bq + r \qquad (0 \le r < b),$$

that is, $q = \lfloor a/b \rfloor$ and $r = a \mod b$. Recall Newton's method to find a root of f(x):

$$x_{i+1} := x_i - \frac{f(x_i)}{f'(x_i)}.$$

To compute $c \approx 1/b$, we apply this to f(x) = 1/x - b, using the Newton iteration

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{\frac{1}{x_i} - b}{-\frac{1}{x^2}} = 2x_i - bx_i^2.$$

We can then compute $q = \lfloor ca \rfloor$ and r = a - bq.

Euclidean division

As an example, let us approximate 1/b=1/123456789 working in base 10 (in an actual implementation would use base 2, or base 2^w , where w is the word size).

$$x_0 = 1 \times 10^{-8}$$

$$x_1 = 2(1 \times 10^{-8}) - (1.2 \times 10^8)(1 \times 10^{-8})^2$$

$$= 0.80 \times 10^{-8}$$

$$x_2 = 2(0.80 \times 10^{-8}) - (1.234 \times 10^8)(0.80 \times 10^{-8})^2$$

$$= 0.8102 \times 10^{-8}$$

$$x_3 = 2(0.8102 \times 10^{-8}) - (1.2345678 \times 10^8)(0.8102 \times 10^{-8})^2$$

$$= 0.81000002 \times 10^{-8}.$$

We double the precision we are using at each step, and each x_i is correct up to an error in its last decimal place. The value x_3 suffices to correctly compute $\lfloor a/b \rfloor$ for $a \leq 10^{15}$.

Euclidean division

There is an analogous algorithm for Euclidean division in $\mathbb{F}_p[x]$. Given $a, b \in \mathbb{F}_p[x]$ with b monic we con compute the unique $q, r \in \mathbb{F}_p[x]$ for which

$$a = bq + r$$
 $(\deg r < \deg b).$

See the lecture notes for details. In both cases if the divisor b is fixed we can save time by precomputing $c\approx 1/b$ (as on Problem Set 1).

Theorem

Let $q=p^d$ be a prime power and assume $\log d=O(\log p)$ or p=O(1). The time to multiply two elements in \mathbb{F}_q is $O(\mathsf{M}(n))=O(n\log n)$, where $n=\log q$.

Under a widely believed conjecture we know that multiplication in \mathbb{F}_q takes time $O(n \log n)$ (but not necessarily $O(\mathsf{M}(n))$), without any assumptions about p and d.

Inverting elements of a finite field

Given integers a>b>0 the (extended) Euclidean algorithm computes $s,t\in\mathbb{Z}$ with

$$\gcd(a,b) = as + bt \quad (|s| \le b/\gcd(a,b), \ |t| \le a/\gcd(a,b))$$

If a=p is prime, then ps+bt=1 and $t\equiv b^{-1} \bmod p$ with $t\in [0,p-1]$. The Euclidean algorithm works in any Euclidean ring, including $\mathbb{F}_p[x]$.

But note that $\mathbb{F}_p[x]$ has a larger unit group than \mathbb{Z} and $\gcd(a,b)$ is defined only units. More formally, $\gcd(a,b)=(a,b)=(c)$ is a principal ideal. In \mathbb{Z} there is a unique positive choice of c, while in $\mathbb{F}_p[x]$ there is a unique monic choice of c.

The fast Euclidean algorithm (see lecture notes) yields the following theorem.

Theorem

Let $q=p^d$ be a prime power and assume $\log d=O(\log p)$ or p=O(1). The time to invert an element of \mathbb{F}_q^{\times} is $O(\mathsf{M}(n)\log n)=O(n\log^2 n)$, where $n=\log q$.

Exponentiation (also known as scalar multiplication)

Given a group element g and a positive integer a we want to compute $g^a = gg\cdots g$ (or if we write the group operation additively, $ag = g + g + \cdots + g$).

We can achieve this using a "square-and-multiply" (or "double-and-add") algorithm:

- 1. Let $a = \sum_{i=0}^{n} 2^{i} a_{i}$ and initialize h to g.
- **2.** For i from n-1 down to 0:
 - a. Replace h with h^2
 - **b.** If $a_i = 1$ then replace h with hg.

At the end of the *ith* loop we have $h = g^b$ with $b = \sum_{i=0}^{n-i} 2^j a_{i+j}$.

This allows us to compute g^a using at most 2n = O(n) group operations. The leading constant 2 can be improved; you will have a chance to explore this on Problem Set 2.

For \mathbb{F}_q^{\times} each group operation takes time $O(\mathsf{M}(n))$, and for $a \leq q-1$ the time to compute g^a is $O(n\mathsf{M}(n)) = O(n^2 \log n)$. Note: we can always reduce a modulo q-1.

Root-finding over finite fields

Given $f \in \mathbb{F}_q[x]$ we wish to compute its \mathbb{F}_q -rational roots, the set $\{a \in \mathbb{F}_q : f(a) = 0\}$.

Note that we can determine the multiplicity of a root a by evaluating derivatives of f at a, since $(x-a)^n$ divides f(x) if and only if $f^{(i)}(a)=0$ for $0 \le i < n$.

An $\overline{\mathbb{F}}_q$ -root of f lies in \mathbb{F}_q if and only if it is also a root of x^q-x , thus the \mathbb{F}_q -rational roots of f are precisely the roots of $g(x):=\gcd(f,x^q-x)$, all of which are distinct.

When q is larger than $d := \deg f$, we do not want to compute $\gcd(f(x), x^q - x)$ directly using the Euclidean algorithm (note that when computing square roots in a cryptographic size field we might have d=2 and $q=2^{255}-19$).

Instead we compute $h(x) = x^q \mod f$ by exponentiating x by q in the ring $\mathbb{F}_q[x]/(f)$ using binary exponentiation, and we then compute $g(x) := \gcd(f(x), h(x) - x)$.

Randomized root-finding

Having computed $g(x) = \gcd(f(x), x^q - x) = (x - a_1) \cdots (x - a_r)$ as a product of monic linear factors whose roots are the \mathbb{F}_q -rational roots of f, we already know how many distinct \mathbb{F}_q -rational roots f has: $\deg g$.

We can use the same approach to compute the number of distinct \mathbb{F}_{q^n} -rational roots f has for $n=1,2,\ldots,\deg f$, and by computing their multiplicities we can determine the degrees of all the irreducible factors of $f\in\mathbb{F}_q[x]$.

But no polynomial-time algorithm is known for computing the actual roots a_1, \ldots, a_r when r > 1. We need to use randomization to do this efficiently. Assume q is odd.

Rabin: Pick a uniform random $\delta \in \mathbb{F}_q$ and compute $h(x) = \gcd(g(x), (x+\delta)^2 + 1)$.

With probability $\frac{(q-1)}{2q}$, the polynomial h will be a non-trivial factor of g, and we can apply this recursively to h and g/h.