
18.783 Elliptic Curves
Lecture 3

Andrew Sutherland

September 14, 2023

Representing finite fields

For Fp ' Z/pZ we use integers in [0, p− 1] denoting elements of Z/pZ.

For Fq ' Fd
p ' Fp[x]/(xd) we use vectors in Fd

p denoting elements of Fp[x]/(xd),
which can view as elements of Fp[x]/(f) for some irreducible f ∈ Fp[x] of degree d.
It does not matter which f we pick, but some choices are better than others.

This reduces all computation in finite fields to integer and polynomial arithmetic.

We should note that there are other choices. If F×q = 〈r〉 (so r is a primitive root), we
could use 0 to denote 0 and e ∈ [1, q − 1] to denote re.

Integer arithmetic
Complexity of ring operations on n-bit integers:

addition/subtraction O(n)
multiplication (FFT) O(n logn)

To multiply polynomials in Fp[x] we use Kronecker substitution.
Let f̂ ∈ Z[x] denote the lift of f ∈ Fp[x] to Z[x]. We compute h = fg ∈ Fp[x] via

ĥ(2m) = f̂(2m)ĝ(2m)

with m ≥ 2 lg p+ lg(d+ 1), where d := deg f . The kth coefficient of h can be
obtained by extracting the kth block of m bits from ĥ(2m) and reducing it modulo p.

All ring operations in Fp[x] can thus be reduced to ring operations in Z, provided we
know how to reduce integers modulo p.

Euclidean division

For positive integers a, b we want to compute the unique q, r ≥ 0 for which

a = bq + r (0 ≤ r < b),

that is, q = ba/bc and r = a mod b. Recall Newton’s method to find a root of f(x):

xi+1 := xi −
f(xi)
f ′(xi)

.

To compute c ≈ 1/b, we apply this to f(x) = 1/x− b, using the Newton iteration

xi+1 = xi −
f(xi)
f ′(xi)

= xi −
1
xi
− b
− 1

x2
i

= 2xi − bx2
i .

We can then compute q = bcac and r = a− bq.

Euclidean division

As an example, let us approximate 1/b = 1/123456789 working in base 10 (in an
actual implementation would use base 2, or base 2w, where w is the word size).

x0 = 1× 10−8

x1 = 2(1× 10−8)− (1.2× 108)(1× 10−8)2

= 0.80× 10−8

x2 = 2(0.80× 10−8)− (1.234× 108)(0.80× 10−8)2

= 0.8102× 10−8

x3 = 2(0.8102× 10−8)− (1.2345678× 108)(0.8102× 10−8)2

= 0.81000002× 10−8.

We double the precision we are using at each step, and each xi is correct up to an error
in its last decimal place. The value x3 suffices to correctly compute ba/bc for a ≤ 1015.

Euclidean division
There is an analogous algorithm for Euclidean division in Fp[x].
Given a, b ∈ Fp[x] with b monic we con compute the unique q, r ∈ Fp[x] for which

a = bq + r (deg r < deg b).

See the lecture notes for details. In both cases if the divisor b is fixed we can save time
by precomputing c ≈ 1/b (as on Problem Set 1).

Theorem
Let q = pd be a prime power and assume log d = O(log p) or p = O(1).
The time to multiply two elements in Fq is O(M(n)) = O(n logn), where n = log q.

Under a widely believed conjecture we know that multiplication in Fq takes time
O(n logn) (but not necessarily O(M(n))), without any assumptions about p and d.

Inverting elements of a finite field
Given integers a > b > 0 the (extended) Euclidean algorithm computes s, t ∈ Z with

gcd(a, b) = as+ bt (|s| ≤ b/ gcd(a, b), |t| ≤ a/ gcd(a, b))

If a = p is prime, then ps+ bt = 1 and t ≡ b−1 mod p with t ∈ [0, p− 1].
The Euclidean algorithm works in any Euclidean ring, including Fp[x].

But note that Fp[x] has a larger unit group than Z and gcd(a, b) is defined only units.
More formally, gcd(a, b) = (a, b) = (c) is a principal ideal. In Z there is a unique
positive choice of c, while in Fp[x] there is a unique monic choice of c.

The fast Euclidean algorithm (see lecture notes) yields the following theorem.

Theorem
Let q = pd be a prime power and assume log d = O(log p) or p = O(1).
The time to invert an element of F×q is O(M(n) logn) = O(n log2n), where n = log q.

Exponentiation (also known as scalar multiplication)
Given a group element g and a positive integer a we want to compute ga = gg · · · g
(or if we write the group operation additively, ag = g + g + · · ·+ g).

We can achieve this using a “square-and-multiply” (or “double-and-add”) algorithm:
1. Let a =

∑n
i=0 2iai and initialize h to g.

2. For i from n− 1 down to 0:
a. Replace h with h2

b. If ai = 1 then replace h with hg.
At the end of the ith loop we have h = gb with b =

∑n−i
j=0 2jai+j .

This allows us to compute ga using at most 2n = O(n) group operations. The leading
constant 2 can be improved; you will have a chance to explore this on Problem Set 2.

For F×q each group operation takes time O(M(n)), and for a ≤ q − 1 the time to
compute ga is O(nM(n)) = O(n2 logn). Note: we can always reduce a modulo q − 1.

Root-finding over finite fields

Given f ∈ Fq[x] we wish to compute its Fq-rational roots, the set {a ∈ Fq : f(a) = 0}.

Note that we can determine the multiplicity of a root a by evaluating derivatives of f
at a, since (x− a)n divides f(x) if and only if f (i)(a) = 0 for 0 ≤ i < n.

An Fq-root of f lies in Fq if and only if it is also a root of xq − x, thus the Fq-rational
roots of f are precisely the roots of g(x) := gcd(f, xq − x), al of which are distinct.

When q is larger than d := deg f , we do not want to compute gcd(f(x), xq − x)
directly using the Euclidean algorithm (note that when computing square roots in a
cryptographic size field we might have d = 2 and q = 2255 − 19).

Instead we compute h(x) = xq mod f by exponentiating x by q in the ring Fq[x]/(f)
using binary exponentiation, and we then compute g(x) := gcd(f(x), h(x)− x).

Randomized root-finding

Having computed g(x) = gcd(f(x), xq − x) = (x− a1) · · · (x− ar) as a product of
monic linear factors whose roots are the Fq-rational roots of f , we already know how
many distinct Fq-rational roots f has: deg g.

We can use the same approach to compute the number of distinct Fqn-rational roots f
has for n = 1, 2, . . . ,deg f , and by computing their multiplicities we can determine the
degrees of all the irreducible factors of f ∈ Fq[x].

But no polynomial-time algorithm is known for computing the actual roots a1, . . . , ar

when r > 1. We need to use randomization to do this efficiently.. Assume q is odd.

Rabin: Pick a uniform random δ ∈ Fq and compute h(x) = gcd(g(x), (x+ δ)2 + 1).

With probability (q−1)
2q , the polynomial h will be a non-trivial factor of g, and we can

apply this recursively to h and g/h.

