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Fermat’s last theorem

Conjecture (Fermat 1637)

The equation xn + yn = zn has no integer solutions with xyz 6= 0 and n > 2.

Suppose (a, b, c, n) is a counterexample to the conjecture.

If d = gcd(a, b, c) > 1 then (a/d, b/d, c/d, n) is also a counterexample.
We thus assume gcd(a, b, c) = 1, which forces a, b, c to be pairwise coprime.

If n is divisible by 2 < m < n then (an/m, bn/m, cn/m,m) is also a counterexample. It
thus suffices to consider the case n = 4 and the case where n is an odd prime.

Fermat treated n = 4, so we assume n is an odd prime and replace z with −z to obtain

xn + yn + zn = 0,

which we wish to show has no solutions with x, y, z ∈ Z6=0 pairwise coprime.



Chronology of progress
1637 Fermat makes his conjecture and proves it for n = 4.
1753 Euler proves FLT for n = 3 (his proof has a fixable error).
1800s Sophie Germain proves FLT for n - xyz for all n < 100.
1825 Dirichlet and Legendre complete the proof for n = 5.
1839 Lamé addresses n = 7.
1847 Kummer proves FLT for all primes n - h(Q(ζn)), called regular primes.

This leaves 37, 59, and 67 as the only open cases for n < 100.
1857 Kummer addresses 37, 59, and 67, but his proof has gaps.
1926 Vandiver fills the gaps and addresses all irregular primes n < 157.
1937 Vandiver and assistants handle all irregular primes n < 607.
1954 Lehmer, Lehmer, and Vandiver introduce techniques better suited to

mechanical computation and use a computer to address all n < 2521.
1954-1993 Computers verify FLT for all n < 4, 000, 000.

This work is all based on results in algebraic number theory and has no direct
connection to elliptic curves.



The Frey-Hellegouarch curve

In his 1972 PhD thesis Hellegouarch considers the elliptic curve over Q

Ea,b,c : y2 = x(x− ap)(x+ bp)

associated to a solution to the Fermat equation

ap + bp + cp = 0

for some prime p > 3. Proving FLT amounts to showing that no such Ea,b,c exists.

In 1984 Frey suggested that any such Ea,b,c could not be modular.

Serre gave a more precise formulation of Frey’s suggestion known as the epsilon
conjecture that involves modular forms and their associated Galois representations.

Serre’s epsilon conjecture was proved by Ribet in the late 1980’s, meaning that the
modularity of elliptic curves over Q (even just in the semistable case) would imply FLT.



Why the Frey-Hellegouarch curve should not exist

The discriminant of Ea,b,c is

∆(Ea.b,c) = −16(0− ap)2(0 + bp)2(ap + bp)2 = −16(abc)2p,

which is very close to its minimal discriminant

∆min(Ea,b,c) = 2−8(abc)2p.

The elliptic curve Ea,b,c has good reduction at all primes ` - abc and multiplicative
reduction at `|abc. It follows that Ea,b,c is semistable with conductor

NEa,b,c
=
∏
`|abc

`,

which is dramatically smaller than ∆min(Ea,b,c) (recall that p > 4, 000, 000), and
would appear to be incompatible with Szpiro’s conjecture ∆min(E) ≤ cεN6+ε

E .



Galois representations
Definition
Let E/Q be an elliptic curve and let ` be a prime. The mod-` Galois representation

ρ̄E,` : Gal(Q/Q)→ Aut(E[`]) ' GL2(Z/`Z)

is defined by ρ̄(σ) :=
(
(x : y : z) 7→ (σ(x) : σ(y) : σ(z))

)
∈ Aut(E[`]).

We similarly define for each prime power `n

ρ̄E,`n : Gal(Q/Q)→ Aut(E[`n]) ' GL2(Z/`nZ).

The `-adic Galois representation is the continuous homomorphism

ρE,` : Gal(Q/Q)→ Aut(T`(E)) ' GL2(Z`),

Here T`(E) := lim←−nE[`n] is the `-adic Tate module and Z` := lim←−n Z/`
nZ is

the ring of `-adic integers.



Frobenius elements

The value of ρ̄E,`n(σ) depends only on the restriction of σ to the `n-torsion field
K := Q(E[`n]), which we note is a Galois extension of Q.

Let S be a finite set of primes that includes ` and the primes of bad reduction for E.

For each prime p 6∈ S we may fix a prime p|p of K above p and consider the Frobenius
element σp ∈ Gal(K/Q), which is the inverse image of the p-power Frobenius
automorphism of the residue field Fp := OK/p under the canonical isomorphism

{σ ∈ Gal(K/Q) : σ(p) = p} =: Dp
∼−→ Gal(Fp/Fp) = 〈x 7→ xp〉

σ 7→
(
x̄ 7→ σ(x)

)
.

The Frobenius elements σp for p|p form a conjugacy class σp of Gal(K/Q).



Frobenius elements

For which prime p 6∈ S we have

tr ρE,`n(σp) ≡ ap mod `n and det ρE,`n(σp) ≡ p mod `n,

which uniquely determines the trace of Frobenius ap ∈ Z once we have `n > 4√p.

The `-adic Galois representation ρE,` determines the Dirichlet coefficients ap of the
L-function L(E, s) for all but the finitely many primes p ∈ S. By the Faltings-Tate
theorem, this uniquely determines the isogeny class of E.

Thus for every prime ` 6= p the `-adic Galois representation of E/Q uniquely
determines its isogeny class and therefore its L-function L(E, s).

This includes the values of ap at p ∈ S, even though we excluded them.



Modular Galois representations

We call any continuous homomorphism ρ : Gal(Q/Q)→ GL2(Z`) an `-adic Galois
representation, whether it is associated to an elliptic curve or not, and similarly define
mod-` Galois representations ρ̄ : Gal(Q/Q)→ GL2(Z/`Z).

Definition
An `-adic Galois representation ρ is modular (of weight k and level N) if there is a
modular form fρ =

∑
anq

n ∈ Sk(Γ1(N)) with an ∈ Z such that

tr ρ(σp) = ap

for all primes p - `N , and we similarly call ρ̄ : Gal(Q/Q)→ GL2(Z/`Z) modular if

tr ρ̄(σp) ≡ ap mod `

for all primes p - `N .



Serre’s modularity conjecture

Definition
Let c ∈ Gal(Q/Q) be the automorphism corresponding to complex conjugation.
A mod-` Galois representation ρ̄ is odd if det ρ(c) = −1, and irreducible if its image
does not fix any one dimensional subspace of (Z/`Z)2, equivalently, its image is not
conjugate to a group of upper triangular matrices.

For any elliptic curve E/Q the mod-` Galois representation ρ̄E,` is necessarily odd, and
irreducible for ` 6= 2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163, by Mazur’s isogeny theorem.

Conjecture (Serre)

Every odd irreducible Galois representation ρ̄ : Gal(Q/Q)→ GL2(Z/`Z) is modular.



Serre’s ε-conjecture and Ribet’s level lowering theorem
Serre gave a more precise formulation of his conjecture that associates an optimal
weight and optimal level to each odd irreducible mod-` Galois representation. For
mod-` Galois representations ρ̄E,` the optimal weight is 2 (provided we pick ` - NE).

For the Frey-Helleougarch curve Ea,b,c the optimal level is 2.
But there are no nonzero modular forms of weight 2 and level 2, because

dimS2(Γ1(2)) = dimS2(Γ0(2)) = g(X0(2)) = 0.

Theorem (Ribet)

Let ` be prime, let E be an elliptic curve of conductor N = mN ′, where m is the
product of all primes p|N such that vp(N) = 1 and vp(∆min(E)) ≡ 0 mod `. If E is
modular and ρ̄E,` is irreducible, then ρ̄E,` is modular of weight 2 and level N ′.

Corollary
The elliptic curve Ea,b,c is not modular.



The modulatiry lifting theorem of Taylor and Wiles

Given a representation ρ0 : GQ → GL2(Z/`Z), a representation ρ1 : GQ → GL2(Z`)
whose reduction modulo ` is equal to ρ0 is called a lift of ρ0. More generally, if R is a
suitable ring with a reduction map to Z/`Z, and ρ1 : GQ → GL2(R) has reduction ρ0,
then we say that ρ1 is a lift of ρ0 (to R). A deformation of ρ0 is an equivalence class
of lifts of ρ0 to the ring R, which is sometimes called the deformation ring.
Building on work by Mazur, Hida, and others that established the existence of certain
universal deformations ρT : GQ → GL2(T), where T is a certain Hecke algebra, Taylor
and Wiles were able to show that if ρ0 is modular, then every lift of ρ0 satisfying a
specified list of properties is modular (this is an example of an “R = T” theorem).

Theorem (Taylor-Wiles)

Let E/Q be a semistable elliptic curve. If ρE,` is modular, then ρE,` is also modular
(and therefore E is modular).



The proof of Fermat’s last theorem
Theorem (Langlands-Tunnel)

Let E be an elliptic curve over Q. If ρE,3 is irreducible, then it is modular.

Theorem (Wiles)

Let E/Q be a semistable elliptic curve for which ρE,5 is irreducible. There exists a
semistable elliptic curve E′/Q such that ρE′,3 is irreducible and ρE′,5 ' ρE,5.

Lemma
No semistable elliptic curve E/Q admits a rational 15-isogeny.

Theorem (Wiles)

Let E/Q be a semistable elliptic curve. Then E is modular.
Proof: To the board!


