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The modularity theorem

Definition
An elliptic curve E/Q is modular if it has the same L-function as a modular form.

Theorem (Taylor-Wiles 1995)

Every semistable elliptic curve E/Q is modular.

Corollary (Wiles 1995)

The equation xn + yn = zn has no integers solutions with xyz 6= 0 for n > 2.

Theorem (Breuil-Conrad-Diamond-Taylor 2001)

Every elliptic curve E/Q is modular.



Weak modular forms
Definition
A holomorphic function f : H → C is a weak modular form of weight k for a
congruence subgroup Γ if for every γ =

(
a b
c d

)
∈ Γ we have

f(γτ) = (cτ + d)kf(τ).

If −I ∈ Γ, for odd k the only weak modular form of weight k is the zero function.

Example
The j-function j(τ) is a weak modular form of weight 0 for SL2(Z), and for k ≥ 3

Gk(τ) := Gk([1, τ ]) :=
∑

m,n∈Z
(m,n) 6=(0,0)

1
(m+ nτ)k ,

is a weak modular form of weight k for SL2(Z).



Modular forms
If Γ(N) ⊆ Γ then f(τ +N) = f(τ) for any weak modular form f : H → C.
It follows that f has a q-expansion (at ∞) of the form

f(τ) = f∗(q1/N )
∞∑

n=−∞
anq

n/N (q := e2πiτ )

Definition
A weak modular form f is holomorphic at ∞ if f∗ is holomorphic at 0, and f is
holomorphic at the cusps if f(γτ) is holomorphic at ∞ for all γ ∈ SL2(Z).
A modular form is a weak modular form that is holomorphic at the cusps.

Example
The j-function is not a modular form, but the Eisenstein series Gk(τ) is a modular
form of weight k for all even k ≥ 4.



Cusp forms

Definition
A modular form is a cusp form if it vanishes at all the cusps; equivalently its
q-expansion has the form

∑
n≥1 anq

n (at every cusp).

Example
The Eisenstein series Gk(τ) are not cusp forms but the discriminant function

∆(τ) = g2(τ)3 − 27g3(τ)2

is a cusp form of weight 12 for SL2(Z).

The set Mk(Γ) of modular forms of weight k for Γ is a C-vector space that contains
the set of cusp forms Sk(Γ) as a subspace. For k = 2 we have dimSk(Γ) = g(Γ).



Hecke operators

Definition
For n ∈ Z>0 the Hecke operator (or Hecke correspondence) Tn is a linear operator on
the free abelian group of lattices L := [ω1, ω2] defined by

Tn :=
∑

[L:L′]=n
L′.

We also define the homethety operator Rλ by L 7→ λL, for all λ ∈ C×.

Theorem
The operators Tn and Rλ satisfy the following:
(i) TnRλ = RλTn and RλRµ = Rλµ.

(ii) Tmn = TmTn for all m ⊥ n.
(iii) Tpr+1 = TprTp − pTpr−1Rp for all primes p and integers r ≥ 1.



The action of Hecke operators on modular forms

Each modular form f : H → C of weight k defines a function on lattices [ω1, ω2] via

f([ω1, ω2]) := f(ω−1
1 [1, ω2/ω1]) := ω−k1 f(ω2/ω1).

Definition
For f ∈Mk(Γ0(1)) we define

Rλf(τ) := f(λ[1, τ ]) = λ−kf(τ) ∈Mk(Γ0(1)),

Tnf(τ) := nk−1 ∑
[[1,τ ]:L]=n

f(L) = nk−1 ∑
ad=n, 0≤b<d

d−kf

(
aτ + b

d

)
∈Mk(Γ0(1)).

Rλ and Tn are linear operators on Mk(Γ0(1)) that we can restrict to Sk(Γ0(1)).
We have Tmn = TmTn for m ⊥ n, and Tpr+1 = TprTp − pk−1Tpr−1 for p prime.



Eigenforms

Theorem
For any f ∈ Sk(Γ0(1)) and prime p we have

an(Tpf) =
{
anp(f) if p - n,
anp(f) + pk−1an/p(f) if p | n.

and for all m ⊥ n we have am(Tnf) = amn(f). In particular a1(Tn(f)) = an(f).

Definition
An eigenform for Sk(Γ0(1)) satisfies Tnf = λnf for some λ1, λ2, . . . ∈ C×.
We normalize eigenforms so that a1(f) = 1, and then λn = an for all n ∈ Z>0.
We then have aman = amn for m ⊥ n and apr = apapr−1 − pk−1apr−2 for p prime.



A basis of eigenforms

Definition
Let Γ be a congruence subgroup. The Petersson inner product on Sk(Γ) is defined by

〈f, g〉 =
∫
F
f(τ)g(τ)yk−2dxdy.

It is a positive definite Hermitian form on Sk(Γ): it is bilinear and 〈f, g〉 = 〈g, f〉,
with 〈f, f〉 = 0 if and only if f = 0. Moreover, we have 〈f, Tng〉 = 〈Tnf, g〉.
The Hecke operators are thus Hermitian operators on the space Sk(Γ).

Theorem
The space of cusp forms for Sk(Γ0(1)) is a direct sum of one-dimensional Hecke
eigenspaces, and it has a unique basis of normalized eigenforms f(τ) =

∑
anq

n for
which an is the eigenvalue of Tn on the subspace spanned by f .



The Atkin-Lehner theory of newforms

Definition
A cusp form f ∈ Sk(Γ0(N)) is old if f ∈ Sk(Γ0(M)) for some M properly dividing N .
The set of old forms is a subspace Sold

k (Γ0(N)) of Sk(Γ0(N)). Taking the orthogonal
complement with respect to the Petersson inner product yields

Sk(Γ0(N)) = Sold
k (Γ0(N))⊕ Snew

k (Γ0(N)),

The level of f ∈ Sk(Γ0(N)) is the least M |N for which f ∈ Sk(Γ0(M)).
Normalized eigenforms f ∈ Snew

k (Γ0(N)) are newforms, and necessarily have level N .

Theorem (Atkin-Lehner)

The space Snew
k (Γ0(N)) is a direct sum of one-dimensional Hecke eigenspaces, each

generated by a newform f(τ) =
∑
n anq

n for which an is the eigenvalue of Tn on 〈f〉.



Dirichlet series

Definition
A Dirichlet series is a function of the form L(s) =

∑
n≥1 ann

−s with an ∈ C.
If |an| = O(nσ) then L(s) converges locally uniformly in the half plane re(s) > 1 + σ.

Example
The Riemann zeta function is the Dirichlet series ζ(s) =

∑
n≥1 n

−s.
It converges locally uniformly to a holomorphic function on re(s) > 1,
with a simple pole at s = 1 and no other poles. Moreover, the following hold:
• ζ(s) has an analytic continuation to a meromorphic function on C;
• ζ̃(s) = π−s/2Γ( s2)ζ(s) satisfies1 the functional equation ζ̂(s) = ζ̂(1− s);
• we have the Euler product ζ(s) =

∏
p(1− p−s)−1.

1Here Γ(s) :=
∫∞

0 e−tts−1dt is the Euler gamma function.



L-functions of modular forms

Definition
The L-function of a cusp form f =

∑
anq

n is the Dirichlet series L(f, s) :=
∑
ann

−s.
If f has weight k then L(f, s) converges locally uniformly on re(s) > 1 + k/2.

Theorem (Hecke)

For f ∈ Sk(Γ0(N)) the L-function L(f, s) has an holomorphic continuation to C and
L̂(f, s) := N s/2(2π)−sΓ(s)L(f, s) satisfies L̂(f, s) = ±L̂(f, k − s).
For f ∈ Snew

k (Γ0(N)) the L-function L(f, s) has the Euler product

L(f, s) =
∑
n≥1

ann
−s =

∏
p

(1− app−s + χ(p)pk−1p−2s)−1,

where the Dirichlet character χ satisfies χ(p) = 0 for p|N and χ(p) = 1 otherwise.



Summary of modular forms for Γ0(N)
• A modular form of weight k for Γ0(N) is a holomorphic function f : H∗ → C

satisfying f(γτ) = (cτ + d)kf(τ) for all γ =
(
a b
c d

)
∈ Γ0(N).

• A cusp form f ∈ Sk(Γ0(N)) vanishes at the cusps (its q-expansion has a0 = 0).
• The cusp forms Sk(Γ0(N)) are a C-vector space with a Petersson inner product.
• The Hecke operators Tn are commuting Hermitian operators on Sk(Γ0(N)).
• An eigenform f =

∑
anq

n ∈ Sk(Γ0(N)) satisfies Tnf = anf for all n ≥ 1.
• A cusp form f ∈ SkΓ0(N)) is old if f ∈ Sk(Γ0(M)) for some proper divisor M |N ,

and we have Sk(Γ0(N)) = Sold
k (Γ0(N))⊕ Snew

k (Γ0(N)).
• The level of f ∈ Sk(Γ0(N)) is the least M |N for which f ∈ Snew

k (Γ0(M)).
• The newforms of weight k and level N are a canonical basis for Snew

k (Γ0(N)).
• The L-function L(f, s) has an analytic continuation, a functional equation

satisfied by L̂(f, s), and an Euler product
∏

(1− app−s + χ(p)pk−1p−2s)−1.



The L-function of an elliptic curve over Q

Definition
The L-function of an elliptic curve E/Q is defined by the Euler product

LE(s) =
∏
p

Lp(p−s)−1 =
∏
p

(
1− app−s + χ(p)pp−2s

)−1
,

where χ(p) is 0 if E has bad reduction at p, and 1 otherwise. For primes of good
reduction ap := p+ 1−#E(Fp) is the trace of Frobenius, and otherwise

Lp(T ) =


1 if E has additive reduction at p;
1− T if E has split mulitiplicative reduction at p;
1 + T if E has non-split multiplicative reduction at p.

This means that ap ∈ {0,±1} at bad primes.



Primes of bad reduction

Definition
Let K be a number field. An integral model for E/K is a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with a1, a2, a3, a4, a6 ∈ OK . The minimal discriminant of E/K is the OK-ideal

∆min(E) :=
∏
p

pmin vp(∆)

where p varies over primes of K and ∆ over discriminants of integral models for E.
A prime of bad reduction for E is a prime p of K that divides the ideal ∆min(E).

A global minimal model for E/K is an integral model with discriminant ∆min(E).
Such models always exist when K has class number one (and in particular for K = Q).



Why we like (general) Weierstrass equations

Every elliptic curve E/Q can be defined by an equation of the form y2 = x3 +Ax+B.

But equations of this form are usually not global minimal models, and a prime p that
divides the discriminant −16(4A3 + 27B2) is not necessarily a prime of bad reduction,
even though y2 = x3 +Ax+B defines a singular curve over Fp in this case.

Example
Consider the elliptic curve y2 = x3 − 13392x− 1080432 over Q.
We have A = 24 · 33 · 31 and B = 24 · 33 · 41 · 61 (so no extraneous powers), and

∆ = −16(4A3 + 27B2) = −350572971995136 = −212312115.

But 2 and 3 are not primes of bad reduction!
Indeed, y2 + y = x3− x2 is a global minimal model with discriminant ∆min(E) = −11.



Types of bad reduction

If p is an odd prime of bad reduction for E/Q we can find an integral model y2 = f(x)
whose discriminant ∆ satisfies vp(∆) = vp(∆min) > 0, and f(x) then has a repeated
root r modulo p. Without loss of generality, we assume r = 0 (replace x with x− r).

Over Fp we then have the curve E : y2z = x3 + ax2z with a singular point (0 : 0 : 1).
Now define Ens(Fp) := E(Fp)− {(0 : 0 : 1)} and let ap := p−#Ens(Fp) ∈ Z.
The set Ens(Fp) is a finite abelian group (under the usual group law) and we have(

a
p

)
#Ens(Fp) E

ns(Fp) reduction type
0 p ' Fp additive

+1 p− 1 ' F×p split multiplicative
−1 p+ 1 ' {α ∈ F×p2 : αp+1 = 1} non-split multiplicative

Note that ap = p−#Ens(Fp) =
(
a
p

)
in every case. Something similar works for p = 2.



The conductor of an elliptic curve

Definition
The conductor of an elliptic curve E/Q is the integer

NE :=
∏
p

pε(p)+δ(p)

where ε(p) = 0, 1, 2 when E has good, multiplicative, additive reduction at p.
The “wild” exponent δ(p) is zero unless we have additive reduction at p = 2, 3 in which
case it can be defined using the ramification of p in the pn-torsion fields Q(E[pn]).
We have NE |∆min(E) with vp(NE) ≤ 8, 5 for p = 2, 3 and vp(NE) ≤ 2 for p > 3.

Definition
An elliptic curve E/Q is semistable if its conductor is squarefree.
Equivalently, E does not have additive reduction at any prime.



Modularity
Definition
For an elliptic curve E/Q with L(E, s) =

∑
ann

−s we define fE : H → C by

fE(τ) :=
∑
n≥1

anq
n (q := e2πiτ )

The elliptic curve E is modular if the function fE is a modular form.
Equivalently, E is modular if and only if L(E, s) is the L-function of a modular form.

If E is modular then fE must be a cusp form of weight 2 since the Euler factors are

1− app−s + χ(p)pp−2s = 1− app−s + χ(p)pk−1p−2s,

Theorem (Modularity theorem)

Let E/Q be an elliptic curve. Then fE is an eigenform of weight 2 and level NE .



The functional equation

Corollary
Let E/Q be an elliptic curve. The L-function L(E, s) has a holomorphic continuation
to C and L̂(E, s) := N

s/2
E (2π)−sΓ(s)LE(s) satisfies L̂(E, s) = ±L̂(E, 2− s).

Notice that L̂(E, s) = −L̂(E, 2− s) is possible only when ords=1L(E, s) is odd.

Conjecture (Weak BSD)

We have E(Q) ' Zr ⊕ E(Q)tors if and only if ords=1L(E, s) = r.

Conjecture (Parity conjecture)

If E(Q) ' Zr ⊕ E(Q)tors then L̂(E, s) = (−1)rL̂(E, 2− s).



Eichler-Shimura

Definition
Let f =

∑
anq

n ∈ Snew
2 (Γ0(N)) be a newform.

The coefficients an are algebraic integers that generate a finite extension Q(f)/Q.
The dimension of f is dim f := [Q(f) : Q]; we call f rational if dim f = 1.

One can associate to any newform in f ∈ Snew
2 (Γ0(N)) a lattice Λ in Cd and a

corresponding abelian variety Af := Cd/Λ of dimension d = dim f defined over Q.
One then has L(A, s) =

∏
σ L(σ(f), s) where σ(f) ranges over the Aut(C)-orbit of f

(equivalently, an ∈ Q(f) and σ varies over embeddings of Q(f) into C).

Theorem (Eichler-Shimura, Carayol)

For every rational newform f ∈ Snew
2 (Γ0(N)) there is an elliptic curve E/Q of

conductor N with fE = f and L(E, s) = L(f, s).



Faltings-Tate

Recall that isogenous elliptic curves over Fp have the same trace of Frobenius.
If E1 and E2 are isogenous elliptic curves over Q, then ap(E1) = ap(E2) for all
primes of good reduction, and in fact ap(E1) = ap(E2) for all primes.

It follows that isogenous elliptic curves over Q have the same L-function.
Remarkably, the converse holds, in fact something even stronger holds.

Theorem (Faltings-Tate)

If two elliptic curves E,E′ over Q satisfy ap(E) = ap(E′) for all but finitely many
primes p then E and E′ are isogenous (thus ap(E) = ap(E′) for all primes p).

Corollary
Elliptic curves over Q are isogenous if and only if they have the same L-function.



Isogeny classes of elliptic curves and modular forms
Distinct eigenforms Snew

2 (Γ0(N)) necessarily have distinct L-functions, since their
q-expansions

∑
anq

n must be linearly independent. The modular form fE given by
the modularity theorem thus depends only on the isogeny class of E/Q and in general
there may be non-isomorphic isogenous E/Q that correspond to the same fE .

There is thus in general a many-to-one relationship between elliptic curves over Q and
rational eigenforms of weight 2, but a one-to-one relationship between isogeny classes
of elliptic curves over Q and rational eigenforms of weight 2.

You can see this explicitly in the L-functions and Modular Forms Database (LMFDB).

Example
The elliptic curves 11.a1, 11.a2, 11.a3 of conductor NE = 11 make up the isogeny
class 11.a, which corresponds to the modular form 11.2.a.a of weight 2 and level 11.
They all have the same L-function 2-11-1.1-c1-0-0, which has ords=1L(s) = 0.

https://www.lmfdb.org
https://www.lmfdb.org/11.a1
https://www.lmfdb.org/11.a2
https://www.lmfdb.org/11.a3
https://www.lmfdb.org/11.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/11/2/a/a/11.2.a.a
https://www.lmfdb.org/L/2/11/1.1/c1/0/0

