18.783 Elliptic Curves Lecture 22

Shiva Chidambaram

November 30, 2023

ℓ-isogeny graphs

Throughout this lecture, k is a field and $\ell \neq \operatorname{char}(k)$ is a prime.
Let E_{1} / k be an elliptic curve and let $j_{1}:=j\left(E_{1}\right)$. The k-rational roots of

$$
\phi_{\ell}(Y):=\Phi_{\ell}\left(j_{1}, Y\right)
$$

are precisely the j-invariants of the elliptic curves E_{2} / k that are ℓ-isogenous to E_{1}.

Definition

The ℓ-isogeny graph $G_{\ell}(k)$ is the directed graph with vertex set k and edges $\left(j_{1}, j_{2}\right)$ present with multiplicity equal to the multiplicity of j_{2} as a root of $\Phi_{\ell}\left(j_{1}, Y\right)$.
$G_{\ell}(k)$ may contain self-loops (ℓ-isogenies may be endomorphisms), and edges may occur with multiplicity (ℓ-isogenies $E_{1} \rightarrow E_{2}$ may have distinct kernels).

If $\left(j_{1}, j_{2}\right)$ is an edge in $G_{\ell}(k)$ then so is $\left(j_{2}, j_{1}\right)$ (there is a dual isogeny). For $j_{1}, j_{2} \notin\{0,1728\}$ these edges have the same multiplicity.

Horizontal and vertical ℓ-isogenies

Theorem

Let $\varphi: E \rightarrow E^{\prime}$ be an ℓ-isogeny of elliptic curves over k. Then $\operatorname{End}^{0}\left(E^{\prime}\right) \simeq \operatorname{End}^{0}(E)$. If $\operatorname{End}^{0}(E)=K$ is an imaginary quadratic field then $\operatorname{End}(E)=\mathcal{O}$ and $\operatorname{End}\left(E^{\prime}\right)=\mathcal{O}^{\prime}$ are orders in K such that one of the following holds:
(i) $\mathcal{O}=\mathcal{O}^{\prime}$,
(ii) $\left[\mathcal{O}: \mathcal{O}^{\prime}\right]=\ell$,
(iii) $\left[\mathcal{O}^{\prime}: \mathcal{O}\right]=\ell$.

Proof: To the board!

Definition

Let $\varphi: E \rightarrow E^{\prime}$ be an ℓ-isogeny of with $\operatorname{End}(E)=\mathcal{O}$ and $\operatorname{End}\left(E^{\prime}\right)=\mathcal{O}^{\prime}$ rank 2 .
(i) When $\mathcal{O}=\mathcal{O}^{\prime}$ we say that φ is horizontal;
(ii) When $\left[\mathcal{O}: \mathcal{O}^{\prime}\right]=\ell$ we say that φ is descending;
(iii) When $\left[\mathcal{O}^{\prime}: \mathcal{O}\right]=\ell$ we say that φ is ascending.

We collectively refer to ascending and descending isogenies as vertical isogenies.

ℓ-isogeny graphs over \mathbb{C}

Theorem

Let E / \mathbb{C} be an elliptic curve with CM by an order \mathcal{O} of discriminant D. If $\ell \nmid\left[\mathcal{O}_{K}: \mathcal{O}\right]$ then E admits $1+\left(\frac{D}{\ell}\right)$ horizontal, $\ell-\left(\frac{D}{\ell}\right)$ descending, and no ascending ℓ-isogenies. Otherwise E admits no horizontal, ℓ descending, and one ascending ℓ-isogenies. Proof: To the board!

Over the complex numbers ℓ-isogeny graphs are (countably) infinite: there are infinitely many connected components (there is at least one for each $\mathcal{O} \subseteq \mathcal{O}_{K}$ with $\left.\ell \nmid\left[\mathcal{O}_{K}: \mathcal{O}\right]\right)$, and each component is infinite, since we can always keep descending.

Vertices corresponding to elliptic curves with $\ell\left[\mathcal{O}_{K}: \mathcal{O}\right]$ all look the same: there is a single ascending edge and ℓ descending edges.

ℓ-isogeny graphs over finite fields

Lemma

Let \mathcal{O} be an imaginary quadratic order of discriminant D and $q \perp D$ be a prime power. The set $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{q}\right)$ is either empty or has cardinality $h(D)$. If $\mathrm{Ell}_{\mathcal{O}}\left(\mathbb{F}_{q}\right)$ is nonempty, so is $\operatorname{Ell}_{\mathcal{O}}^{\prime}\left(\mathbb{F}_{q}\right)$ for every imaginary quadratic order \mathcal{O}^{\prime} that contains \mathcal{O}.
Proof: To the board!

Corollary

Let E / \mathbb{F}_{q} be an elliptic curve with $C M$ by \mathcal{O} of discriminant $D \perp q$ in an imaginary quadratic field K, and let $\ell \nmid q$ be prime. Then E admits $1+\left(\frac{D}{\ell}\right)$ horizontal ℓ-isogenies and one or zero ascending ℓ-isogenies, depending on whether $\ell \nmid\left[\mathcal{O}_{K}: \mathcal{O}\right]$ or not. The number of descending ℓ-isogenies admitted by E over \mathbb{F}_{q} is either zero or $\ell-\left(\frac{D}{\ell}\right)$, depending on whether $\mathrm{Ell}_{\mathcal{O}^{\prime}}\left(\mathbb{F}_{q}\right)$ is empty or not, where \mathcal{O}^{\prime} is the order of index ℓ in \mathcal{O}.

The CM action over finite fields

If E / \mathbb{F}_{q} is an elliptic curve with CM by an imaginary quadratic order \mathcal{O} and \mathfrak{a} is a proper \mathcal{O}-ideal, then we have an \mathfrak{a}-torsion subgroup

$$
E[\mathfrak{a}]:=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right): \alpha(P)=0 \text { for all } \alpha \in \mathfrak{a}\right\} .
$$

Provided the norm of \mathfrak{a} is prime to q, there is a corresponding separable isogeny $\varphi_{\mathfrak{a}}: E \rightarrow E^{\prime}$ with $\operatorname{ker} \varphi_{\mathfrak{a}}=E[\mathfrak{a}]$ and $\operatorname{deg} \varphi_{\mathfrak{a}}=\mathrm{Na}$ which is unique up to isomorphism.
Every ideal class contains infinitely many prime ideals, so we can always realize the CM action using horizontal ℓ-isogenies.

Corollary

Let \mathcal{O} be an imaginary quadratic order of discriminant D and let \mathbb{F}_{q} be a finite field with $q \perp D$. If the set $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{q}\right)$ is nonempty then it is a $\operatorname{cl}(\mathcal{O})$-torsor in which the action of the ideal class of any proper \mathcal{O}-ideal of prime norm $\ell \nmid q$ is given by a horizontal ℓ-isogeny, and the inverse of this action is given by the dual isogeny.

Isogeny volcanoes

Definition

An ℓ-volcano V is a connected undirected graph whose vertices are partitioned into one or more levels V_{0}, \ldots, V_{d} such that the following hold:

1. The subgraph on V_{0} (the surface) is a regular graph of degree at most 2.
2. For $i>0$, each vertex in V_{i} has exactly one neighbor in level V_{i-1}, and this accounts for every edge not on the surface.
3. For $i<d$, each vertex in V_{i} has degree $\ell+1$.

Level V_{d} is called the floor of the volcano; the floor and surface coincide when $d=0$.
Like $G_{\ell}(k)$, an ℓ-volcano may have multiple edges and self-loops, but it is an undirected graph. If the surface of an ℓ-volcano has more than two vertices, it must be a simple cycle. Two vertices may be connected by 1 or 2 edges, and a single vertex may have 0 , 1 , or 2 self-loops. The shape of an ℓ-volcano is determined by the integers $\ell, d,\left|V_{0}\right|$.

Isogeny volcanoes

If we ignore components that contain the two exceptional j-invariants 0 and 1728 , the ordinary components of $G_{\ell}\left(\mathbb{F}_{p}\right)$ are all ℓ-volcanoes. This was proved by David Kohel in his Ph.D., although the term "volcano" was coined later by Fouquet and Morain.

Isogeny volcanoes

Theorem (Kohel)

Let \mathbb{F}_{q} be a finite field, let $\ell \nmid q$ be a prime, and let V be an ordinary component of $G_{\ell}\left(\mathbb{F}_{q}\right)$ that does not contain the j-invariants 0 or 1728 . Then V is an ℓ-volcano and:
(i) The vertices in level V_{i} all have the same endomorphism ring \mathcal{O}_{i}.
(ii) The subgraph on V_{0} has degree $1+\left(\frac{D_{0}}{\ell}\right)$, where $D_{0}=\operatorname{disc}\left(\mathcal{O}_{0}\right)$.
(iii) If $\left(\frac{D_{0}}{\ell}\right) \geq 0$, then $\left|V_{0}\right|$ is the order of $[\mathfrak{l}] \in \operatorname{cl}\left(\mathcal{O}_{0}\right)$, where $\ell \mathcal{O}_{0}=\overline{\mathfrak{l}}$, else $\left|V_{0}\right|=1$.
(iv) V has depth d, where $4 q=t^{2}-\ell^{2 d} v^{2} D_{0}$ with $\ell \nmid v, t^{2}=\left(\operatorname{tr} \pi_{E}\right)^{2}$, for $j(E) \in V$.
(v) $\ell \nmid\left[\mathcal{O}_{K}: \mathcal{O}_{0}\right]$ and $\left[\mathcal{O}_{i}: \mathcal{O}_{i+1}\right]=\ell$ for $0 \leq i<d$.

Proof: To the board!

Remark

This theorem be extends to $0,1728 \in V$ with minor modifications.

Finding the floor

The vertices that lie on the floor of an ℓ-volcano V are distinguished by their degree.

Lemma

Let v be a vertex in an ordinary component V of depth d in $G_{\ell}\left(\mathbb{F}_{q}\right)$. Then either $\operatorname{deg} v \leq 2$ and $v \in V_{d}$, or $\operatorname{deg} v=\ell+1$ and $v \notin V_{d}$.

Algorithm (FindFloor)

Given an ordinary vertex $v_{0} \in G_{\ell}\left(\mathbb{F}_{q}\right)$, find a vertex on the floor of its component.

1. If $\operatorname{deg} v_{0} \leq 2$ then output v_{0} and terminate.
2. Pick a random neighbor v_{1} of v_{0} and set $s \leftarrow 1$.
3. While $\operatorname{deg} v_{s}>1$: pick a random neighbor $v_{s+1} \neq v_{s-1}$ of v_{s} and increment s.
4. Output v_{s}.

Pro tip: rather than picking v_{s+1} as a root of $\phi(Y)=\Phi_{\ell}\left(v_{s}, Y\right)$ use $\phi(Y) /\left(Y-v_{s-1}\right)^{e}$, where e is the multiplicity of v_{s-1} as a root of $\phi(Y)$.

Finding a shortest path to the floor

Algorithm (FindShortestPathToFloor)

Given an ordinary $v_{0} \in G_{\ell}\left(\mathbb{F}_{q}\right)$, find a shortest path to the floor of its component.

1. Let $v_{0}=j(E)$. If $\operatorname{deg} v_{0} \leq 2$ then output v_{0} and terminate.
2. Pick three neighbors of v_{0} and extend paths from each of these neighbors in parallel, stopping as soon as any of them reaches the floor. ${ }^{1}$
3. Output a path that reached the floor.

If δ is the length of the shortest path to the floor V_{d}, then $j(E) \in V_{d-\delta}$. This effectively gives us an "altimeter" $\delta(v)$ that we may use to navigate V. We can determine whether a given edge (v_{1}, v_{2}) is horizontal, ascending, or descending, by comparing $\delta\left(v_{1}\right)$ to $\delta\left(v_{2}\right)$, and we can determine the exact level of any vertex. A more sophisticated approach uses the Weil pairing for large d (but this is rare).

[^0]
[^0]: ${ }^{1}$ If v_{0} does not have three distinct neighbors then just pick all of them.

