18.783 Elliptic Curves Lecture 19

Andrew Sutherland

November 16, 2023

Modular curves

Definition

The principal congruence subgroup $\Gamma(N)$ is defined by

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right\} .
$$

A congruence subgroup (of level N) is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains $\Gamma(N)$, e.g.

$$
\begin{aligned}
& \Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod N\right\} ; \\
& \Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \bmod N\right\} .
\end{aligned}
$$

A classical modular curve is a quotient of \mathcal{H}^{*} or \mathcal{H} by a congruence subgroup.
We now define the classical modular curves

$$
X(N):=\mathcal{H}^{*} / \Gamma(N), \quad X_{1}(N):=\mathcal{H}^{*} / \Gamma_{1}(N), \quad X_{0}(N):=\mathcal{H}^{*} / \Gamma_{0}(N)
$$

q-expansions

Let $\mathcal{D}=\{z \in \mathbb{C}:|z|<1\}$ denote the (open) unit disk. The map $q: \mathcal{H} \rightarrow \mathcal{D}$ defined by

$$
q(\tau)=e^{2 \pi i \tau}=e^{-2 \pi \mathrm{im} \tau}(\cos (2 \pi \mathrm{re} \tau)+i \sin (2 \pi \mathrm{re} \tau))
$$

bijectively maps each vertical strip $\mathcal{H}_{n}:=\{\tau \in \mathcal{H}: n \leq \operatorname{re} \tau<n+1\}$ (for any $n \in \mathbb{Z}$) to the punctured unit disk $\mathcal{D}_{0}:=\mathcal{D}-\{0\}$. Note that $q(\tau) \rightarrow 0$ as $\operatorname{im} \tau \rightarrow \infty$.

If $f: \mathcal{H} \rightarrow \mathbb{C}$ is a meromorphic function that satisfies $f(\tau+1)=f(\tau)$ for all $\tau \in \mathcal{H}$, then we can write f in the form $f(\tau)=f^{*}(q(\tau))$, where $f^{*}: \mathcal{D}_{0} \rightarrow \mathbb{C}$ is a meromorphic function that we can define by fixing a vertical strip \mathcal{H}_{n} and putting $f^{*}:=f \circ\left(q_{\mid \mathcal{H}_{n}}\right)^{-1}$.

Definition

The q-expansion (or q-series) of a meromorphic $f: \mathcal{H} \rightarrow \mathbb{C}$ with $f(\tau+1)=f(\tau)$ is

$$
f(\tau)=f^{*}(q(\tau))=\sum_{n=-\infty}^{+\infty} a_{n} q(\tau)^{n}=\sum_{n=-\infty}^{+\infty} a_{n} q^{n}
$$

Cusps

Let Γ be a congruence subgroup of level N. Then $\gamma=\left(\begin{array}{cc}1 & N \\ 0 & 1\end{array}\right) \in \Gamma$, and $\gamma \tau=\tau+N$. If $f: \mathcal{H} \rightarrow \mathbb{C}$ is meromorphic and Γ-invariant, then $f(\tau+N)=f(\tau)$ and we can write

$$
f(\tau)=f^{*}\left(q(\tau)^{1 / N}\right)=\sum_{n=-\infty}^{\infty} a_{n} q^{n / N}
$$

If f^{*} is meromorphic at 0 then

$$
f(\tau)=\sum_{n=n_{0}}^{\infty} a_{n} q^{n / N} \quad\left(a_{n_{0}} \neq 0\right)
$$

and say that f is meromorphic at ∞ (with order n_{0} at ∞). If $f(\gamma \tau)$ is meromorphic at ∞ for every $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ then we say that f is meromorphic at the cusps.

Recall that the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit of ∞ in \mathcal{H}^{*} is $\mathcal{H}^{*}-\mathcal{H}=\mathbb{P}^{1}(\mathbb{Q})$; the $\gamma \infty$ are called cusps, and Γ partitions $\mathbb{P}^{1}(\mathbb{Q})$ into a finite set of Γ-orbits called the cusps of Γ.

Modular functions

If $f: \mathcal{H} \rightarrow \mathbb{C}$ is a Γ-invariant meromorphic function then for every $\gamma \in \Gamma$ we have

$$
\lim _{\mathrm{im} \tau \rightarrow \infty} f(\gamma \tau)=\lim _{\mathrm{im} \tau \rightarrow \infty} f(\tau)
$$

whenever either limit exists.
If f is meromorphic at the cusps it must have the same order at ∞ and $\gamma \infty$ and thus defines a meromorphic function $g: X_{\Gamma} \rightarrow \mathbb{C}$ on the modular curve $X_{\Gamma}:=\mathcal{H}^{*} / \Gamma$.

Conversely, each meromorphic $g: X_{\Gamma} \rightarrow \mathbb{C}$ determines a Γ-invariant meromorphic $f: \mathcal{H} \rightarrow \mathbb{C}$ that is meromorphic at the cusps via $f=g \circ \pi$, where $\pi: \mathcal{H}^{*} \rightarrow \mathcal{H}^{*} / \Gamma$.

Definition

A modular function for a congruence subgroup Γ is a Γ-invariant meromorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ that is meromorphic at the cusps, equivalently, a meromorphic $g: X_{\Gamma} \rightarrow \mathbb{C}$.

Function fields of modular curves

For any congruence subgroup Γ the modular functions for Γ for a field $\mathbb{C}(\Gamma)$ that is a transcendental extension of \mathbb{C}. As we will prove for $\Gamma=\Gamma_{0}(N)$, the Riemann surface $X_{\Gamma}:=\mathcal{H}^{*} / \Gamma$ is an algebraic curve, and $\mathbb{C}(\Gamma)$ is isomorphic to its function field $\mathbb{C}\left(X_{\Gamma}\right)$.

In fact every compact Riemann surface S corresponds to a smooth projective curve over X / \mathbb{C} with function field $\mathbb{C}(X) \simeq \mathbb{C}(S)$, and given a smooth projective curve X / \mathbb{C} we can endow the set $X(\mathbb{C})$ with a topology and a complex structure that makes it a Riemann surface S with $\mathbb{C}(S) \simeq \mathbb{C}(X)$.

If $\Gamma^{\prime} \subseteq \Gamma$ are congruence subgroups, every modular function for Γ is also a modular function for Γ^{\prime}, and this induces an inclusion $\mathbb{C}(\Gamma) \subseteq \mathbb{C}\left(\Gamma^{\prime}\right)$ of their function fields that induces a corresponding morphism $X_{\Gamma^{\prime}} \rightarrow X_{\Gamma}$ of modular curves.

The q-expansion of the j-function.

Lemma

Let $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$, and let $q=e^{2 \pi i \tau}$. We have

$$
\begin{gathered}
g_{2}(\tau)=\frac{4 \pi^{4}}{3}\left(1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right), \quad g_{3}(\tau)=\frac{8 \pi^{6}}{27}\left(1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}\right), \\
\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}=(2 \pi)^{12} q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
\end{gathered}
$$

Corollary

The q-expansion of the j-function is $j(\tau)=q^{-1}+744+\sum_{n \geq 1} a_{n} q^{n}$ with $a_{n} \in \mathbb{Z}$. In particular, the j-function is meromorphic at the cusps.
Proof: To the board!

Modular functions for $\Gamma(1)$

The corollary implies that the j-function is a modular function for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$.
Recall that the j-function defines a holomorphic bijection $Y(1) \xrightarrow{\sim} \mathbb{C}$. If we put $j(\infty):=\infty$ then it defines a meromorphic bijection $X(1) \xrightarrow{\sim} \mathcal{S}:=\mathbb{P}^{1}(\mathbb{C})$ that has only a simple pole at ∞ (if we put $j(\rho):=0, j(i):=1728$ this determines j).

Theorem

Every modular function for $\Gamma(1)$ is a rational function of $j(\tau)$, that is, $\mathbb{C}(\Gamma(1))=\mathbb{C}(j)$. Proof: We have $\mathbb{C}(j) \subseteq \mathbb{C}(\Gamma(1))$ and the lemma below gives the reverse inclusion.

Lemma

Every meromorphic $f: \mathcal{S} \rightarrow \mathbb{C}$ is a rational function.

Corollary

The $\mathbb{C}[j]$ is precisely the subring of $\mathbb{C}(j)=\mathbb{C}(\Gamma(1))$ that is holomorphic on \mathcal{H}.

Modular functions for $\Gamma_{0}(N)$

Theorem

Let Γ be a congruence subgroup. $[\mathbb{C}(\Gamma): \mathbb{C}(j)]$ has degree at most $[\operatorname{SL2}(\mathbb{Z}): \Gamma]$. Proof: To the board!

Remark

$$
\text { If }-I \in \Gamma \text { then }[\mathbb{C}(\Gamma): \mathbb{C}(j)]=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right] \text { (we will prove this for } \Gamma=\Gamma_{0}(N) \text {). }
$$

Theorem

The function $j_{N}(\tau):=j(N \tau)$ is a modular function for $\Gamma_{0}(N)$.
Proof: To the board!

Theorem

$\mathbb{C}\left(\Gamma_{0}(N)\right)=\mathbb{C}(j)\left(j_{N}\right)$ and $\left[\mathbb{C}\left(\Gamma_{0}(N)\right): \mathbb{C}(j)\right]=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]$.
Proof: To the board!

The modular polynomial $\Phi_{N} \in \mathbb{C}[\boldsymbol{X}, \boldsymbol{Y}]$

Definition

The modular polynomial Φ_{N} is the minimal polynomial of j_{N} over $\mathbb{C}(j)$.
We may write $\Phi_{N} \in \mathbb{C}(j)[Y]$ as

$$
\Phi_{N}(Y)=\prod_{i=1}^{n}\left(Y-j_{N}\left(\gamma_{i} \tau\right)\right)
$$

where $\left\{\gamma_{1}, \ldots \gamma_{n}\right\}$ is a set of right coset representatives for $\Gamma_{0}(N)$.
The coefficients of $\Phi_{N}(Y)$ are symmetric polynomials in $j_{N}\left(\gamma_{i} \tau\right)$, so $\Gamma(1)$-invariant, and holomorphic on \mathcal{H}, hence lie in $\mathbb{C}[j]$. Thus $\Phi_{N} \in \mathbb{C}[j, Y]$.

If we replace every occurrence of j in Φ_{N} with a new variable X we obtain a polynomial in $\mathbb{C}[X, Y]$ that we write as $\Phi_{N}(X, Y)$.

The modular polynomial $\Phi_{N} \in \mathbb{Z}[X, Y]$

Lemma

Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. For N prime the right cosets of $\Gamma_{0}(N)$ in $\Gamma(1)$ are

$$
\left\{\Gamma_{0}(N)\right\} \cup\left\{\Gamma_{0}(N) S T^{k}: 0 \leq k<N\right\}
$$

Theorem

$\Phi_{N} \in \mathbb{Z}[X, Y]$.
Proof: To the board!

Lemma (Hasse q-expansion principle)

Let $f(\tau)$ be a modular function for $\Gamma(1)$ that is holomorphic on \mathcal{H} and whose q-expansion has coefficients that lie in an additive subgroup A of \mathbb{C}.
Then $f(\tau)=P(j(\tau))$, for some polynomial $P \in A[X]$.

