18.783 Elliptic Curves Lecture 19

Andrew Sutherland

November 16, 2023

Modular curves

Definition

The principal congruence subgroup $\Gamma(N)$ is defined by

$$\Gamma(N) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \operatorname{SL}_2(\mathbb{Z}) : \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \bmod N \right\}.$$

A congruence subgroup (of level N) is a subgroup of $\mathrm{SL}_2(\mathbb{Z})$ that contains $\Gamma(N)$, e.g.

$$\Gamma_1(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \bmod N \right\};$$

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \bmod N \right\}.$$

A classical modular curve is a quotient of \mathcal{H}^* or \mathcal{H} by a congruence subgroup.

We now define the classical modular curves

$$X(N) := \mathcal{H}^*/\Gamma(N), \qquad X_1(N) := \mathcal{H}^*/\Gamma_1(N), \qquad X_0(N) := \mathcal{H}^*/\Gamma_0(N).$$

q-expansions

Let $\mathcal{D}=\{z\in\mathbb{C}:|z|<1\}$ denote the (open) unit disk. The map $q\colon\mathcal{H}\to\mathcal{D}$ defined by

$$q(\tau) = e^{2\pi i \tau} = e^{-2\pi \operatorname{im} \tau} \left(\cos(2\pi \operatorname{re} \tau) + i \sin(2\pi \operatorname{re} \tau) \right)$$

bijectively maps each vertical strip $\mathcal{H}_n := \{ \tau \in \mathcal{H} : n \leq \operatorname{re} \tau < n+1 \}$ (for any $n \in \mathbb{Z}$) to the punctured unit disk $\mathcal{D}_0 := \mathcal{D} - \{0\}$. Note that $q(\tau) \to 0$ as $\operatorname{im} \tau \to \infty$.

If $f \colon \mathcal{H} \to \mathbb{C}$ is a meromorphic function that satisfies $f(\tau+1) = f(\tau)$ for all $\tau \in \mathcal{H}$, then we can write f in the form $f(\tau) = f^*(q(\tau))$, where $f^* \colon \mathcal{D}_0 \to \mathbb{C}$ is a meromorphic function that we can define by fixing a vertical strip \mathcal{H}_n and putting $f^* := f \circ (q_{|\mathcal{H}_n})^{-1}$.

Definition

The q-expansion (or q-series) of a meromorphic $f \colon \mathcal{H} \to \mathbb{C}$ with $f(\tau+1) = f(\tau)$ is

$$f(\tau) = f^*(q(\tau)) = \sum_{n=-\infty}^{+\infty} a_n q(\tau)^n = \sum_{n=-\infty}^{+\infty} a_n q^n.$$

Cusps

Let Γ be a congruence subgroup of level N. Then $\gamma = \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \in \Gamma$, and $\gamma \tau = \tau + N$. If $f \colon \mathcal{H} \to \mathbb{C}$ is meromorphic and Γ -invariant, then $f(\tau + N) = f(\tau)$ and we can write

$$f(\tau) = f^*(q(\tau)^{1/N}) = \sum_{n=-\infty}^{\infty} a_n q^{n/N}.$$

If f^* is meromorphic at 0 then

$$f(\tau) = \sum_{n=n_0}^{\infty} a_n q^{n/N}$$
 $(a_{n_0} \neq 0).$

and say that f is meromorphic at ∞ (with order n_0 at ∞). If $f(\gamma \tau)$ is meromorphic at ∞ for every $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ then we say that f is meromorphic at the cusps.

Recall that the $\mathrm{SL}_2(\mathbb{Z})$ -orbit of ∞ in \mathcal{H}^* is $\mathcal{H}^* - \mathcal{H} = \mathbb{P}^1(\mathbb{Q})$; the $\gamma \infty$ are called cusps, and Γ partitions $\mathbb{P}^1(\mathbb{Q})$ into a finite set of Γ -orbits called the cusps of Γ .

Modular functions

If $f \colon \mathcal{H} \to \mathbb{C}$ is a Γ -invariant meromorphic function then for every $\gamma \in \Gamma$ we have

$$\lim_{\mathrm{im}\,\tau\to\infty}f(\gamma\tau)=\lim_{\mathrm{im}\,\tau\to\infty}f(\tau)$$

whenever either limit exists.

If f is meromorphic at the cusps it must have the same order at ∞ and $\gamma\infty$ and thus defines a meromorphic function $g\colon X_{\Gamma}\to\mathbb{C}$ on the modular curve $X_{\Gamma}:=\mathcal{H}^*/\Gamma$.

Conversely, each meromorphic $g\colon X_\Gamma\to\mathbb{C}$ determines a Γ -invariant meromorphic $f\colon\mathcal{H}\to\mathbb{C}$ that is meromorphic at the cusps via $f=g\circ\pi$, where $\pi\colon\mathcal{H}^*\to\mathcal{H}^*/\Gamma$.

Definition

A modular function for a congruence subgroup Γ is a Γ -invariant meromorphic function $f \colon \mathcal{H} \to \mathbb{C}$ that is meromorphic at the cusps, equivalently, a meromorphic $g \colon X_{\Gamma} \to \mathbb{C}$.

Function fields of modular curves

For any congruence subgroup Γ the modular functions for Γ for a field $\mathbb{C}(\Gamma)$ that is a transcendental extension of \mathbb{C} . As we will prove for $\Gamma = \Gamma_0(N)$, the Riemann surface $X_\Gamma := \mathcal{H}^*/\Gamma$ is an algebraic curve, and $\mathbb{C}(\Gamma)$ is isomorphic to its function field $\mathbb{C}(X_\Gamma)$.

In fact every compact Riemann surface S corresponds to a smooth projective curve over X/\mathbb{C} with function field $\mathbb{C}(X) \simeq \mathbb{C}(S)$, and given a smooth projective curve X/\mathbb{C} we can endow the set $X(\mathbb{C})$ with a topology and a complex structure that makes it a Riemann surface S with $\mathbb{C}(S) \simeq \mathbb{C}(X)$.

If $\Gamma'\subseteq \Gamma$ are congruence subgroups, every modular function for Γ is also a modular function for Γ' , and this induces an inclusion $\mathbb{C}(\Gamma)\subseteq \mathbb{C}(\Gamma')$ of their function fields that induces a corresponding morphism $X_{\Gamma'}\to X_{\Gamma}$ of modular curves.

The q-expansion of the j-function.

Lemma

Let $\sigma_k(n) = \sum_{d|n} d^k$, and let $q = e^{2\pi i \tau}$. We have

$$g_2(\tau) = \frac{4\pi^4}{3} \left(1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n \right), \qquad g_3(\tau) = \frac{8\pi^6}{27} \left(1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n \right),$$

$$\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2 = (2\pi)^{12}q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$

Corollary

The q-expansion of the j-function is $j(\tau) = q^{-1} + 744 + \sum_{n \geq 1} a_n q^n$ with $a_n \in \mathbb{Z}$. In particular, the j-function is meromorphic at the cusps.

Proof: To the board!

Modular functions for $\Gamma(1)$

The corollary implies that the *j*-function is a modular function for $\Gamma(1) = \mathrm{SL}_2(\mathbb{Z})$.

Recall that the *j*-function defines a holomorphic bijection $Y(1) \stackrel{\sim}{\longrightarrow} \mathbb{C}$.

If we put $j(\infty):=\infty$ then it defines a meromorphic bijection $X(1)\stackrel{\sim}{\longrightarrow} \mathcal{S}:=\mathbb{P}^1(\mathbb{C})$ that has only a simple pole at ∞ (if we put $j(\rho):=0$, j(i):=1728 this determines j).

Theorem

Every modular function for $\Gamma(1)$ is a rational function of $j(\tau)$, that is, $\mathbb{C}(\Gamma(1)) = \mathbb{C}(j)$.

Proof: We have $\mathbb{C}(j) \subseteq \mathbb{C}(\Gamma(1))$ and the lemma below gives the reverse inclusion.

Lemma

Every meromorphic $f \colon \mathcal{S} \to \mathbb{C}$ is a rational function.

Corollary

The $\mathbb{C}[j]$ is precisely the subring of $\mathbb{C}(j) = \mathbb{C}(\Gamma(1))$ that is holomorphic on \mathcal{H} .

Modular functions for $\Gamma_0(N)$

Theorem

Let Γ be a congruence subgroup. $[\mathbb{C}(\Gamma) : \mathbb{C}(j)]$ has degree at most $[\operatorname{SL2}(\mathbb{Z}) : \Gamma]$. **Proof**: To the board!

Remark

If $-I \in \Gamma$ then $[\mathbb{C}(\Gamma) : \mathbb{C}(j)] = [\mathrm{SL}_2(\mathbb{Z}) : \Gamma]$ (we will prove this for $\Gamma = \Gamma_0(N)$).

Theorem

The function $j_N(\tau) := j(N\tau)$ is a modular function for $\Gamma_0(N)$.

Proof: To the board!

Theorem

 $\mathbb{C}(\Gamma_0(N)) = \mathbb{C}(j)(j_N)$ and $[\mathbb{C}(\Gamma_0(N)) : \mathbb{C}(j)] = [\operatorname{SL}_2(\mathbb{Z}) : \Gamma_0(N)].$

Proof: To the board!

The modular polynomial $\Phi_N \in \mathbb{C}[X,Y]$

Definition

The modular polynomial Φ_N is the minimal polynomial of j_N over $\mathbb{C}(j)$.

We may write $\Phi_N \in \mathbb{C}(j)[Y]$ as

$$\Phi_N(Y) = \prod_{i=1}^n (Y - j_N(\gamma_i \tau)),$$

where $\{\gamma_1, \dots \gamma_n\}$ is a set of right coset representatives for $\Gamma_0(N)$.

The coefficients of $\Phi_N(Y)$ are symmetric polynomials in $j_N(\gamma_i\tau)$, so $\Gamma(1)$ -invariant, and holomorphic on \mathcal{H} , hence lie in $\mathbb{C}[j]$. Thus $\Phi_N\in\mathbb{C}[j,Y]$.

If we replace every occurrence of j in Φ_N with a new variable X we obtain a polynomial in $\mathbb{C}[X,Y]$ that we write as $\Phi_N(X,Y)$.

The modular polynomial $\Phi_N \in \mathbb{Z}[X,Y]$

Lemma

Let
$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. For N prime the right cosets of $\Gamma_0(N)$ in $\Gamma(1)$ are $\left\{\Gamma_0(N)\right\} \cup \left\{\Gamma_0(N)ST^k : 0 \leq k < N\right\}$.

Theorem

 $\Phi_N \in \mathbb{Z}[X,Y].$

Proof: To the board!

Lemma (Hasse *q*-expansion principle)

Let $f(\tau)$ be a modular function for $\Gamma(1)$ that is holomorphic on $\mathcal H$ and whose q-expansion has coefficients that lie in an additive subgroup A of $\mathbb C$. Then $f(\tau)=P(j(\tau))$, for some polynomial $P\in A[X]$.