18.783 Elliptic Curves Lecture 18

Andrew Sutherland

November 14, 2023

The CM torsor

Let \mathcal{O} be an order in an imaginary quadratic field with ideal class group $\operatorname{cl}(\mathcal{O})$). The set

$$
\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}):=\{j(E): E / \mathbb{C} \text { with } \operatorname{End}(E)=\mathcal{O}\}
$$

is a torsor for the ideal class $\operatorname{group} \operatorname{cl}(\mathcal{O})$, where the action is induced by

$$
\mathfrak{a} E_{\mathfrak{b}}:=E_{\mathfrak{a}^{-1}},
$$

for proper \mathcal{O}-ideals \mathfrak{a} and \mathfrak{b}, where $E_{\mathfrak{b}} \leftrightarrow \mathbb{C} / \mathfrak{b}$, corresponding to the isogeny

$$
\phi_{\mathfrak{a}}: E_{\mathfrak{b}} \rightarrow \mathfrak{a} E_{\mathfrak{b}}
$$

of degree $\mathrm{Na}:=[\mathcal{O}: \mathfrak{a}]$ induced by the inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1} \mathfrak{b}$ with kernel

$$
E_{\mathfrak{b}}[\mathfrak{a}]:=\left\{P \in E(\mathbb{C}): \alpha P=0 \text { for all } \alpha \in \mathfrak{a} \subseteq \mathcal{O} \simeq \operatorname{End}\left(E_{\mathfrak{b}}\right)\right\}
$$

The modular curve $Y(1)$

Recall that the modular group $\Gamma:=\mathrm{SL}_{2}(\mathbb{Z})$ acts on the upper half plane \mathcal{H} via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau:=\frac{a \tau+b}{c \tau+d}
$$

Definition

The modular curve $Y(1)$ is the quotient \mathcal{H} / Γ (the Γ-orbits of \mathcal{H})
The set $Y(1)(\mathbb{C})$ be identified with the fundamental region for Γ :

$$
\mathcal{F}=\{z \in \mathcal{H}: \operatorname{re}(z) \in[-1 / 2,1 / 2) \text { and }|z| \geq 1, \text { with }|z|>1 \text { if } \operatorname{re}(z)>0\}
$$

The region \mathcal{F} is not compact. To make it compact we formally add $\infty:=i \infty$. Now

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} \frac{a \tau+b}{c \tau+d}=\frac{a}{c}
$$

so to construct a space on which Γ acts, we should also include \mathbb{Q}.

The modular curve $Y(1)$

Definition

The extended upper half plane is the set

$$
\mathcal{H}^{*}=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}=\mathcal{H} \cup \mathbb{P}^{1}(\mathbb{Q})
$$

endowed with the topology determined by the following basic open sets

- $\tau \in \mathcal{H}$: all open disks about τ that lie in \mathcal{H};
- $\tau \in \mathbb{Q}$: all sets $\{\tau\} \cup D$, where $D \subseteq \mathcal{H}$ is an open disk tangent to \mathbb{R} at τ;
- $\tau=\infty$: all sets of the form $\{\tau \in \mathcal{H}: \operatorname{im} \tau>r\}$ for any $r>0$.

Definition

The modular curve $X(1)$ is the quotient \mathcal{H}^{*} / Γ (the Γ-orbits of $\left.\mathcal{H}^{*}\right)$.
The set $X(1)(\mathbb{C})$ may be identified with the fundamental region $\mathcal{F}^{*}:=\mathcal{F} \cup\{\infty\}$.

Topological properties of $X(1)$

Lemma

For any compact sets $A, B \subseteq \mathcal{H}$ the set $S=\{\gamma \in \Gamma: \gamma A \cap B \neq \emptyset\}$ is finite.
Proof: To the board!

Lemma

For any $\tau_{1}, \tau_{2} \in \mathcal{H}^{*}$ there exist open neighborhoods U_{1}, U_{2} of τ_{1}, τ_{2} such that

$$
\gamma U_{1} \cap U_{2} \neq \emptyset \quad \Longleftrightarrow \quad \gamma \tau_{1}=\tau_{2}
$$

for $\gamma \in \Gamma$. Each $\tau \in \mathcal{H}^{*}$ has an open neighborhood in which it has no Γ-equivalents.
Proof: To the board!

Theorem

$X(1)$ is a connected compact Hausdorff space.
Proof: To the board!

Riemann surfaces

Definition

A complex structure on a topological space X is an open cover $\left\{U_{i}\right\}$ of X together with a set of compatible homeomorphisms $\psi_{i}: U_{i} \rightarrow \mathbb{C}$ with open images.
Homeomorphisms ψ_{i} and ψ_{j} are compatible if whenever $U_{i} \cap U_{j} \neq \emptyset$ the transition map

$$
\psi_{j} \circ \psi_{i}^{-1}: \psi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \psi_{j}\left(U_{i} \cap U_{j}\right)
$$

is holomorphic. The ψ_{i} are called charts and the collection $\left\{\psi_{i}\right\}$ is an atlas.

Definition

A Riemann surface is a connected Hausdorff space with a complex structure (equivalently, it is a connected complex manifold of dimension one).

Complex tori are Riemann surfaces

Let L be a lattice in \mathbb{C} and let $\pi: \mathbb{C} \rightarrow \mathbb{C} / L$ be the quotient map, and choose $r>0$ less than half the length of the shortest vector in L.

For each z in a fundamental region for L, let U_{z} be the open disc of radius r about z. Then $\pi_{\left.\right|_{U_{z}}}$ defines a homemomorphism and we may take $\left\{\pi\left(U_{z}\right)\right\}$ as our open cover, the maps $\pi^{-1}: \pi\left(U_{z}\right) \rightarrow U_{z}$ as our charts, and the identity map as transition maps.

This defines a complex structure on the torus \mathbb{C} / L, and it is connected Hausdorff, hence a Riemann surface. In fact it is a compact Riemann surface. To compute its genus we can apply Euler's formula

$$
V-E+F=2-2 g
$$

to any triangulation of a fundamental parallelogram: $1-3+2=2-2 g$, so $g=1$.

A complex structure for $X(1)$

To define a complex structure of $X(1)$ we can restrict attention to \mathcal{F}^{*}. There are three points that complicate matters: $i, \rho:=e^{2 \pi i / 3}, \infty$.

Lemma

Let G_{τ} be the stabilizer of $\tau \in \mathcal{F}^{*}$ in Γ. Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then

$$
G_{\tau}= \begin{cases}\{ \pm I\} \simeq \mathbb{Z} / 2 \mathbb{Z} & \text { if } \tau \notin\{i, \rho, \infty\} ; \\ \langle S\rangle \simeq \mathbb{Z} / 4 \mathbb{Z} & \text { if } \tau=i ; \\ \langle S T\rangle \simeq \mathbb{Z} / 6 \mathbb{Z} & \text { if } \tau=\rho \\ \langle \pm T\rangle \simeq \mathbb{Z} & \text { if } \tau=\infty\end{cases}
$$

Proof: See Problem Set 8.

A complex structure for $X(1)$

Let $\pi: \mathcal{H}^{*} \rightarrow X(1)$ be the quotient map, and for $x \in X(1)$ let τ_{x} be the unique point in \mathcal{F}^{*} with $\pi\left(\tau_{x}\right)=x$, and let $G_{x}:=G_{\tau_{x}}$ be its stabilizer in Γ.
For each $\tau_{x} \in \mathcal{F}^{*}$ pick a neighborhood U_{x} such that $\gamma U_{x} \cap U_{x}$ is empty for all $\gamma \notin G_{x}$. The sets $\pi\left(U_{x}\right)$ are an open cover of $X(1)$.

For $x \neq \infty$ we map U_{x} to the unit disc $\mathcal{D}:=\{z \in \mathbb{C}:|z|<1\}$ via the homeomorphism

$$
\begin{aligned}
\delta_{x}: \mathcal{H} & \rightarrow \mathcal{D} \\
\tau & \mapsto \frac{\tau-\tau_{x}}{\tau-\bar{\tau}_{x}}
\end{aligned}
$$

Note that $\operatorname{im} \tau>0$ and $\operatorname{im} \bar{\tau}_{x}<0$ so $\delta_{x}(\tau)$ is defined and nonzero for all $\tau \in \mathcal{H}$. The map δ_{x} extends to a map on \mathcal{H}^{*} sending ∞ to 1 and \mathbb{Q} to points on $\partial \mathcal{D}$.

A complex structure for $X(1)$

For $\tau_{x} \neq i, \rho, \infty$ we have $G_{x}=\{ \pm 1\}$, which stabilizes every point in U_{x}, so $\pi_{\left.\right|_{U_{x}}}$ is injective and $U_{x} / \Gamma=U_{x} / G_{x}=U_{x}$, and we define the chart $\psi_{x}:=\delta_{x} \circ \pi^{-1}$.
For $\tau_{x}=i, \rho$ we have $\left|G_{x}\right|>2$ we instead define $\psi_{x}(x):=\delta_{x}\left(\pi^{-1}(x)\right)^{n}$, where $n:=\left|G_{x}\right| / 2$ is the size of the Γ-orbits in $U_{x}-\left\{\tau_{x}\right\}$; this also works for $\left|G_{x}\right|=2$.

Lemma

Let $\tau_{x} \in \mathcal{H}$, with $\delta_{x}(\tau)$ as above, and let $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ be a holomorphic function fixing τ_{x} whose n-fold composition with itself is the identity, with n minimal. Then for some primitive nth root of unity ζ, we have $\delta_{x}(\varphi(\tau))=\zeta \delta_{x}(\tau)$ for all $\tau \in \mathcal{H}$.
Proof: See notes.
For $x=\infty$ we have $G_{x}=\simeq \mathbb{Z}$, define $\delta_{\infty}(z):=e^{2 \pi i z}$ for $z \neq \infty$ and $\delta_{\infty}(\infty):=0$, and take the chart $\psi_{\infty}:=\delta_{\infty} \circ \pi^{-1}$, so $\delta_{\infty}(\tau+m)=\delta_{\infty}(\tau)$ for $\tau \in U_{\infty}-\{\infty\}$ and $m \in \mathbb{Z}$.

A complex structure for $X(1)$

Theorem

The open cover $\left\{U_{x}\right\}$ and atlas $\left\{\psi_{x}\right\}$ define a complex structure on $X(1)$.
Proof: See notes.

Theorem

The modular curve $X(1)$ is a compact Riemann surface of genus 0 .
Proof: $X(1)$ is a connected compact Hausdorff with a complex structure, hence a compact Riemann surface. To show that it has genus 0 , we triangulate by connecting the points i, ρ, and ∞, yielding two triangles. Applying Euler's formula

$$
V-E+F=2-2 g
$$

with $V=3, E=3$, and $F=2$, we see that $g=0$.
$X(1)$ is homeomorphic to the Riemann sphere $S=\mathbb{P}^{1}(\mathbb{C})$.
The modular curve $Y(1)$ is homeomorphic to the complex plane \mathbb{C} via the j-function.

More modular curves

Definition

The principal congruence subgroup $\Gamma(N)$ is defined by

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right\} .
$$

A congruence subgroup (of level N) is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains $\Gamma(N)$, e.g.

$$
\begin{aligned}
& \Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod N\right\} ; \\
& \Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \bmod N\right\} .
\end{aligned}
$$

A classical modular curve is a quotient of \mathcal{H}^{*} or \mathcal{H} by a congruence subgroup.
We now define the modular curves

$$
X(N):=\mathcal{H}^{*} / \Gamma(N), \quad X_{1}(N):=\mathcal{H}^{*} / \Gamma_{1}(N), \quad X_{0}(N):=\mathcal{H}^{*} / \Gamma_{0}(N)
$$

all of which are compact Riemann surfaces.

