18.783 Elliptic Curves Lecture 18

Andrew Sutherland

November 14, 2023

The CM torsor

Let \mathcal{O} be an order in an imaginary quadratic field with ideal class group $cl(\mathcal{O})$). The set

 $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}) := \{ j(E) : E/\mathbb{C} \text{ with } \operatorname{End}(E) = \mathcal{O} \}$

is a torsor for the ideal class group $\mathrm{cl}(\mathcal{O}),$ where the action is induced by

 $\mathfrak{a} E_{\mathfrak{b}} := E_{\mathfrak{a}^{-1}\mathfrak{b}},$

for proper \mathcal{O} -ideals \mathfrak{a} and \mathfrak{b} , where $E_{\mathfrak{b}} \leftrightarrow \mathbb{C}/\mathfrak{b}$, corresponding to the isogeny

 $\phi_{\mathfrak{a}} \colon E_{\mathfrak{b}} \to \mathfrak{a} E_{\mathfrak{b}}$

of degree $N\mathfrak{a} := [\mathcal{O} : \mathfrak{a}]$ induced by the inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1}\mathfrak{b}$ with kernel

$$E_{\mathfrak{b}}[\mathfrak{a}] := \{ P \in E(\mathbb{C}) : \alpha P = 0 \text{ for all } \alpha \in \mathfrak{a} \subseteq \mathcal{O} \simeq \operatorname{End}(E_{\mathfrak{b}}) \}.$$

The modular curve Y(1)

Recall that the modular group $\Gamma := SL_2(\mathbb{Z})$ acts on the upper half plane \mathcal{H} via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} au := rac{a au+b}{c au+d}.$$

Definition

The modular curve Y(1) is the quotient \mathcal{H}/Γ (the Γ -orbits of \mathcal{H})

The set $Y(1)(\mathbb{C})$ be identified with the fundamental region for Γ :

$$\mathcal{F} = \{ z \in \mathcal{H} : \operatorname{re}(z) \in [-1/2, 1/2) \text{ and } |z| \ge 1 \text{, with } |z| > 1 \text{ if } \operatorname{re}(z) > 0 \}.$$

The region \mathcal{F} is not compact. To make it compact we formally add $\infty := i\infty$. Now

$$\lim_{i \to \infty} \frac{a\tau + b}{c\tau + d} = \frac{a}{c},$$

so to construct a space on which Γ acts, we should also include \mathbb{Q} .

The modular curve Y(1)

Definition

The extended upper half plane is the set

$$\mathcal{H}^* = \mathcal{H} \cup \mathbb{Q} \cup \{\infty\} = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}).$$

endowed with the topology determined by the following basic open sets

- $\tau \in \mathcal{H}$: all open disks about τ that lie in \mathcal{H} ;
- $\tau \in \mathbb{Q}$: all sets $\{\tau\} \cup D$, where $D \subseteq \mathcal{H}$ is an open disk tangent to \mathbb{R} at τ ;
- $\tau = \infty$: all sets of the form $\{\tau \in \mathcal{H} : \operatorname{im} \tau > r\}$ for any r > 0.

Definition

The modular curve X(1) is the quotient \mathcal{H}^*/Γ (the Γ -orbits of \mathcal{H}^*). The set $X(1)(\mathbb{C})$ may be identified with the fundamental region $\mathcal{F}^* := \mathcal{F} \cup \{\infty\}$.

Topological properties of X(1)

Lemma

For any compact sets $A, B \subseteq \mathcal{H}$ the set $S = \{\gamma \in \Gamma : \gamma A \cap B \neq \emptyset\}$ is finite. **Proof**: To the board!

Lemma

For any $\tau_1, \tau_2 \in \mathcal{H}^*$ there exist open neighborhoods U_1, U_2 of τ_1, τ_2 such that

$$\gamma U_1 \cap U_2 \neq \emptyset \quad \Longleftrightarrow \quad \gamma \tau_1 = \tau_2,$$

for $\gamma \in \Gamma$. Each $\tau \in \mathcal{H}^*$ has an open neighborhood in which it has no Γ -equivalents. **Proof**: To the board!

Theorem

X(1) is a connected compact Hausdorff space. **Proof**: To the board!

Riemann surfaces

Definition

A complex structure on a topological space X is an open cover $\{U_i\}$ of X together with a set of compatible homeomorphisms $\psi_i : U_i \to \mathbb{C}$ with open images. Homeomorphisms ψ_i and ψ_i are compatible if whenever $U_i \cap U_i \neq \emptyset$ the transition map

 $\psi_j \circ \psi_i^{-1} \colon \psi_i(U_i \cap U_j) \to \psi_j(U_i \cap U_j)$

is holomorphic. The ψ_i are called charts and the collection $\{\psi_i\}$ is an atlas.

Definition

A Riemann surface is a connected Hausdorff space with a complex structure (equivalently, it is a connected complex manifold of dimension one).

Complex tori are Riemann surfaces

Let L be a lattice in \mathbb{C} and let $\pi : \mathbb{C} \to \mathbb{C}/L$ be the quotient map, and choose r > 0 less than half the length of the shortest vector in L.

For each z in a fundamental region for L, let U_z be the open disc of radius r about z. Then $\pi_{|_{U_z}}$ defines a homemomorphism and we may take $\{\pi(U_z)\}$ as our open cover, the maps $\pi^{-1} \colon \pi(U_z) \to U_z$ as our charts, and the identity map as transition maps.

This defines a complex structure on the torus \mathbb{C}/L , and it is connected Hausdorff, hence a Riemann surface. In fact it is a compact Riemann surface. To compute its genus we can apply Euler's formula

$$V - E + F = 2 - 2g$$

to any triangulation of a fundamental parallelogram: 1 - 3 + 2 = 2 - 2g, so g = 1.

To define a complex structure of X(1) we can restrict attention to \mathcal{F}^* . There are three points that complicate matters: $i, \rho := e^{2\pi i/3}, \infty$.

Lemma

Let G_{τ} be the stabilizer of $\tau \in \mathcal{F}^*$ in Γ . Let $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then

$$G_{\tau} = \begin{cases} \{\pm I\} \simeq \mathbb{Z}/2\mathbb{Z} & \text{if } \tau \notin \{i, \rho, \infty\} \\ \langle S \rangle &\simeq \mathbb{Z}/4\mathbb{Z} & \text{if } \tau = i; \\ \langle ST \rangle \simeq \mathbb{Z}/6\mathbb{Z} & \text{if } \tau = \rho \\ \langle \pm T \rangle \simeq \mathbb{Z} & \text{if } \tau = \infty. \end{cases}$$

Proof: See Problem Set 8.

Let $\pi: \mathcal{H}^* \to X(1)$ be the quotient map, and for $x \in X(1)$ let τ_x be the unique point in \mathcal{F}^* with $\pi(\tau_x) = x$, and let $G_x := G_{\tau_x}$ be its stabilizer in Γ .

For each $\tau_x \in \mathcal{F}^*$ pick a neighborhood U_x such that $\gamma U_x \cap U_x$ is empty for all $\gamma \notin G_x$. The sets $\pi(U_x)$ are an open cover of X(1).

For $x \neq \infty$ we map U_x to the unit disc $\mathcal{D} := \{z \in \mathbb{C} : |z| < 1\}$ via the homeomorphism

$$\delta_x \colon \mathcal{H} \to \mathcal{D}$$
$$\tau \mapsto \frac{\tau - \tau_x}{\tau - \bar{\tau}_x}$$

Note that $\operatorname{im} \tau > 0$ and $\operatorname{im} \overline{\tau}_x < 0$ so $\delta_x(\tau)$ is defined and nonzero for all $\tau \in \mathcal{H}$. The map δ_x extends to a map on \mathcal{H}^* sending ∞ to 1 and \mathbb{Q} to points on $\partial \mathcal{D}$.

For $\tau_x \neq i, \rho, \infty$ we have $G_x = \{\pm 1\}$, which stabilizes every point in U_x , so $\pi_{|_{U_x}}$ is injective and $U_x/\Gamma = U_x/G_x = U_x$, and we define the chart $\psi_x := \delta_x \circ \pi^{-1}$.

For $\tau_x = i, \rho$ we have $|G_x| > 2$ we instead define $\psi_x(x) := \delta_x(\pi^{-1}(x))^n$, where $n := |G_x|/2$ is the size of the Γ -orbits in $U_x - \{\tau_x\}$; this also works for $|G_x| = 2$.

Lemma

Let $\tau_x \in \mathcal{H}$, with $\delta_x(\tau)$ as above, and let $\varphi \colon \mathcal{H} \to \mathcal{H}$ be a holomorphic function fixing τ_x whose *n*-fold composition with itself is the identity, with *n* minimal. Then for some primitive *n*th root of unity ζ , we have $\delta_x(\varphi(\tau)) = \zeta \delta_x(\tau)$ for all $\tau \in \mathcal{H}$. **Proof**: See notes.

For $x = \infty$ we have $G_x = \simeq \mathbb{Z}$, define $\delta_{\infty}(z) := e^{2\pi i z}$ for $z \neq \infty$ and $\delta_{\infty}(\infty) := 0$, and take the chart $\psi_{\infty} := \delta_{\infty} \circ \pi^{-1}$, so $\delta_{\infty}(\tau + m) = \delta_{\infty}(\tau)$ for $\tau \in U_{\infty} - \{\infty\}$ and $m \in \mathbb{Z}$.

Theorem

The open cover $\{U_x\}$ and atlas $\{\psi_x\}$ define a complex structure on X(1). **Proof**: See notes.

Theorem

The modular curve X(1) is a compact Riemann surface of genus 0.

Proof: X(1) is a connected compact Hausdorff with a complex structure, hence a compact Riemann surface. To show that it has genus 0, we triangulate by connecting the points i, ρ , and ∞ , yielding two triangles. Applying Euler's formula

$$V - E + F = 2 - 2g$$

with V = 3, E = 3, and F = 2, we see that g = 0.

X(1) is homeomorphic to the Riemann sphere $S = \mathbb{P}^1(\mathbb{C})$. The modular curve Y(1) is homeomorphic to the complex plane \mathbb{C} via the *j*-function.

More modular curves

Definition

The principal congruence subgroup $\Gamma(N)$ is defined by

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}.$$

A congruence subgroup (of level N) is a subgroup of $\mathrm{SL}_2(\mathbb{Z})$ that contains $\Gamma(N)$, e.g.

$$\Gamma_1(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N \right\};$$

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N \right\}.$$

A classical modular curve is a quotient of \mathcal{H}^* or \mathcal{H} by a congruence subgroup.

We now define the modular curves

$$X(N) := \mathcal{H}^*/\Gamma(N), \qquad X_1(N) := \mathcal{H}^*/\Gamma_1(N), \qquad X_0(N) := \mathcal{H}^*/\Gamma_0(N),$$

all of which are compact Riemann surfaces.