18.783 Elliptic Curves Lecture 17

Andrew Sutherland

November 9, 2023

Complex multiplication

We have an equivalence of categories between complex tori \mathbb{C}/L and elliptic curves E/\mathbb{C} that relates homethety classes of lattices L to isomorphism classes of E/\mathbb{C} via

$$\begin{array}{ll} \{ \text{lattices } L \subseteq \mathbb{C} \} /_{\sim} & \stackrel{\sim}{\longrightarrow} \{ \text{elliptic curves } E/\mathbb{C} \} /_{\simeq} \\ L & \longmapsto E_L \colon y^2 = 4x^3 - g_2(L)x - g_3(L) \\ j(L) & = & j(E_L) \end{array}$$

with ring isomorphisms

$$\operatorname{End}(\mathbb{C}/L) \simeq \operatorname{End}(E_L) \simeq \mathcal{O}(L) := \{ \alpha \in \mathbb{C} : \alpha L \subseteq L \}$$

The ring $\mathcal{O}(L) \simeq \operatorname{End}(E_L)$ is either \mathbb{Z} , or it is an order \mathcal{O} in an imaginary quadratic field and E_L has complex multiplication by \mathcal{O} and L is homothetic to an \mathcal{O} -ideal.

Proper \mathcal{O} -ideals and the ideal class group

The \mathcal{O} -ideals L for which $\operatorname{End}(E_L) \simeq \mathcal{O}$ are proper, meaning that $\mathcal{O}(L) = \mathcal{O}$. Note that $\mathcal{O} \subseteq \mathcal{O}(L)$ always holds, but in general $\mathcal{O}(L)$ be be larger than \mathcal{O} .

The sets

$$\{L \subseteq \mathbb{C} : \mathcal{O}(L) = \mathcal{O}\}/_{\sim} \longleftrightarrow \{E/\mathbb{C} : \operatorname{End}(E) = \mathcal{O}\}/_{\simeq}$$

are both in bijection with the ideal class group

$$\mathrm{cl}(\mathcal{O}) := \{ \mathsf{proper} \ \mathcal{O} \text{-ideals} \ \mathfrak{a} \} /_{\sim}$$

where the equivalence relation on proper \mathcal{O} -ideals is defined by

$$\mathfrak{a} \sim \mathfrak{b} \qquad \Longleftrightarrow \qquad a\mathfrak{a} = b\mathfrak{b}$$
 for some nonzero $a, b \in \mathcal{O}$,

and the group operation is $[\mathfrak{a}][\mathfrak{b}]=[\mathfrak{a}\mathfrak{b}].$

Fractional ideals and class groups in general

Let \mathcal{O} be an integral domain with fraction field K. For any $\lambda \in K^{\times}$ and \mathcal{O} -ideal \mathfrak{a} , the \mathcal{O} -module

 $\lambda \mathfrak{a} := \{\lambda a : a \in \mathfrak{a}\} \subseteq K$

is a fractional \mathcal{O} -ideal. We can assume $\lambda = \frac{1}{a}$ for some $a \in \mathcal{O}$. The product of two fraction ideals is another fractional ideal:

 $(\lambda \mathfrak{a})(\lambda \mathfrak{a}') := (\lambda \lambda') \mathfrak{a} \mathfrak{a}'.$

A fractional \mathcal{O} -ideal I is invertible if $IJ = \mathcal{O}$ for some fractional \mathcal{O} -ideal J. The set of invertible fractional \mathcal{O} -ideals form a group $\mathcal{I}_{\mathcal{O}}$ under multiplication.

For every $\lambda \in K^{\times}$ the fractional \mathcal{O} -ideal $(\lambda) := \lambda \mathcal{O}$ is invertible, with inverse (λ^{-1}) . Such fractional \mathcal{O} -ideals are principal, and they form a subgroup $\mathcal{P}_{\mathcal{O}} \subseteq \mathcal{I}_{\mathcal{O}}$. We now define $\operatorname{cl}(\mathcal{O}) := \mathcal{I}_{\mathcal{O}}/\mathcal{P}_{\mathcal{O}}$ (we will prove our definitions of $\operatorname{cl}(\mathcal{O})$ are compatible).

The (absolute) norm of an ideal

Let K/k be a finite extension of fields. Multiplication by $\lambda \in K^{\times}$ is an invertible linear transformation $M_{\alpha} \in \operatorname{GL}(K)$ of K as a k-vector space. The norm and trace of λ are

$$N_{K/k}\lambda := \det M_{\lambda} \in k^{\times}$$
 $T_{K/k}\lambda := \operatorname{tr} M_{\lambda} \in k.$

When $k = \mathbb{Q}$ we may write $N := N_{K/\mathbb{Q}}$ and $T := T_{K/\mathbb{Q}}$, and if K is an imaginary quadratic field embedded in \mathbb{C} , we have $N\alpha = \alpha \bar{\alpha}$ and $T\alpha = \alpha + \bar{\alpha}$.

Definition

Let \mathcal{O} be an order in a number field K. The norm of a nonzero \mathcal{O} -ideal \mathfrak{a} is the index

$$\mathrm{N}\mathfrak{a} := [\mathcal{O} : \mathfrak{a}] = \#(\mathcal{O}/\mathfrak{a}) \in \mathbb{Z}_{>0}.$$

For any nonzero $\alpha \in \mathcal{O}$ we have $N(\alpha) = |N\alpha|$, since det M_{α} is the signed volume of the fundamental parallelepipid of the lattice (α) in the \mathbb{Q} -vector space K.

Norms of fractional ideals

Proposition

Let \mathcal{O} be an order in a number field, $\alpha \in \mathcal{O}$ nonzero, and a a nonzero \mathcal{O} -ideal. Then

 $N(\alpha \mathfrak{a}) = N(\alpha) N \mathfrak{a}$

 $\textbf{Proof.} N(\alpha \mathfrak{a}) = [\mathcal{O}: \alpha \mathfrak{a}] = [\mathcal{O}: \mathfrak{a}][\mathfrak{a}: \alpha \mathfrak{a}] = [\mathcal{O}: \mathfrak{a}][\mathcal{O}: \alpha \mathcal{O}] = N\mathfrak{a}N(\alpha) = N(\alpha)N\mathfrak{a}.$

Every fractional ideal in a number field can be written as $\frac{1}{a}\mathfrak{a}$ with $a \in \mathbb{Z}_{>0}$ (if $\alpha \in \mathcal{O}$ has minpoly $f \in \mathbb{Z}[x]$ then $\beta = (f(\alpha) - f(0))/\alpha \in \mathcal{O}$ and $\alpha\beta = f(0) \in \mathbb{Z}$).

Definition

Let $\mathfrak{b} = \frac{1}{a}\mathfrak{a}$ be a nonzero fractional ideal in an order \mathcal{O} of a number field with $a \in \mathbb{Z}_{>0}$. The (absolute) norm of I is

$$\mathbf{N}\mathfrak{b} := \frac{\mathbf{N}\mathfrak{a}}{\mathbf{N}a} \in \mathbb{Q}_{>0}.$$

Proper and invertible fractional ideals

Let \mathcal{O} be an order in an imaginary quadratic field. For any fractional \mathcal{O} -ideal \mathfrak{b} we define $\mathcal{O}(\mathfrak{b}) := \{ \alpha \in K : \alpha \mathfrak{b} \subseteq \mathfrak{b} \}$ and call \mathfrak{b} proper if $\mathcal{O}(\mathfrak{b}) = \mathcal{O}$.

Lemma

Let a be a nonzero \mathcal{O} -ideal and let $\mathfrak{b} = \alpha \mathfrak{a}$ with $\alpha \in K^{\times}$.

Then \mathfrak{b} is proper $\Leftrightarrow \mathfrak{a}$ is proper, and \mathfrak{b} is invertible $\Leftrightarrow \mathfrak{a}$ is invertible.

Proof. First claim: $\{\alpha : \alpha \mathfrak{b} \subseteq \mathfrak{b}\} = \{\alpha : \alpha \lambda \mathfrak{a} \subseteq \lambda \mathfrak{a}\} = \{\alpha : \alpha \mathfrak{a} \subseteq \mathfrak{a}\}.$ Second: if \mathfrak{a} is invertible then $\mathfrak{b}^{-1} = \alpha^{-1}\mathfrak{a}^{-1}$, and if \mathfrak{b} is invertible then $\mathfrak{a}^{-1} = \alpha \mathfrak{b}^{-1}$.

Theorem

Let $\mathfrak{a} = [\alpha, \beta]$ be an \mathcal{O} -ideal. Then \mathfrak{a} is proper if and only if \mathfrak{a} is invertible. Whenever \mathfrak{a} is invertible we have $\mathfrak{a}\overline{\mathfrak{a}} = (N\mathfrak{a})$, where $\overline{\mathfrak{a}} = [\overline{\alpha}, \overline{\beta}]$ and $(N\mathfrak{a})$ is the principal \mathcal{O} -ideal generated by the integer $N\mathfrak{a}$; the inverse of \mathfrak{a} is the fractional \mathcal{O} -ideal $\mathfrak{a}^{-1} = \frac{1}{N\mathfrak{a}}\overline{\mathfrak{a}}$. **Proof.** To the board!

The ideal class group

The fact that proper and invertible fractional ideals coincide implies that our two definitions of the ideal class group cl(O) as

- equivalence classes of proper \mathcal{O} -ideals
- the group of invertible fractional ideals modulo principal ideals

conincide. In particular, $\mathrm{cl}(\mathcal{O})$ is a group!

Corollary

Let \mathcal{O} be an order in an imaginary quadratic field and let \mathfrak{a} and \mathfrak{b} be invertible (equivalently, proper) fractional \mathcal{O} -ideals. Then $N(\mathfrak{ab}) = N\mathfrak{a}N\mathfrak{b}$.

Proof. It suffices to consider the case where \mathfrak{a} and \mathfrak{b} are invertible \mathcal{O} -ideals. We have

$$(N(\mathfrak{ab})) = \mathfrak{ab}\overline{\mathfrak{ab}} = \mathfrak{ab}\overline{\mathfrak{ab}} = \mathfrak{a}\overline{\mathfrak{ab}}\overline{\mathfrak{b}} = (N\mathfrak{a})(N\mathfrak{b}),$$

and it follows that $N(\mathfrak{ab}) = N\mathfrak{a}N\mathfrak{b}$, since $N\mathfrak{a}, N\mathfrak{b}, N(\mathfrak{ab}) \in \mathbb{Z}_{>0}$.

Warning: The ideal norm is not multiplicative in general! (we used invertibility).

The class group action on CM elliptic curves

Let $\ensuremath{\mathcal{O}}$ be an order in an imaginary quadratic field and let

 $\operatorname{Ell}_{\mathcal{O}} := \{ j(E/\mathbb{C}) : \operatorname{End}(E) = \mathcal{O} \}.$

Every E/\mathbb{C} with $\operatorname{End}(\mathcal{O})$ is isomorphic to $E_{\mathfrak{b}}$ for some proper \mathcal{O} -ideal \mathfrak{b} . For any proper \mathcal{O} -ideal \mathfrak{a} let

$$\mathfrak{a} E_{\mathfrak{b}} := E_{\mathfrak{a}^{-1}\mathfrak{b}}.$$

We use $E_{\mathfrak{a}^{-1}\mathfrak{b}}$ rather than $E_{\mathfrak{a}\mathfrak{b}}$ because $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{b}$ but we want $\mathfrak{b} \subseteq \mathfrak{a}^{-1}\mathfrak{b}$. We now define the action of $[\mathfrak{a}] \in \mathrm{cl}(\mathcal{O})$ via

$$[\mathfrak{a}]j(E_{\mathfrak{b}}) := j(E_{\mathfrak{a}^{-1}\mathfrak{b}}),\tag{1}$$

which we can also write as

$$[\mathfrak{a}]j(\mathfrak{b}) := j(\mathfrak{a}^{-1}\mathfrak{b}).$$

Note that this definition does not depend on the choice of representatives \mathfrak{a} and \mathfrak{b} .

The class group action on CM elliptic curves

If \mathfrak{a} is a nonzero principal \mathcal{O} -ideal then \mathfrak{b} and $\mathfrak{a}^{-1}\mathfrak{b}$ are homothetic and $\mathfrak{a}E_{\mathfrak{b}} \simeq E_{\mathfrak{b}}$. It follows that the identity element of $\mathrm{cl}(\mathcal{O})$ acts trivially on the set $\mathrm{Ell}_{\mathcal{O}}(\mathbb{C})$.

For any proper $\mathcal{O}\text{-ideals}\ \mathfrak{a},\mathfrak{b},\mathfrak{c}$ we have

$$\mathfrak{a}(\mathfrak{b}E_{\mathfrak{c}}) = \mathfrak{a}E_{\mathfrak{b}^{-1}\mathfrak{c}} = E_{\mathfrak{a}^{-1}\mathfrak{b}^{-1}\mathfrak{c}} = E_{(\mathfrak{b}\mathfrak{a})^{-1}\mathfrak{c}} = (\mathfrak{b}\mathfrak{a})E_{\mathfrak{c}} = (\mathfrak{a}\mathfrak{b})E_{\mathfrak{c}}.$$

We thus have a group action of $cl(\mathcal{O})$ on $Ell_{\mathcal{O}}(\mathbb{C})$, and it has the following properties:

• free: every stabilizer is trivial, since $[\mathfrak{a}]j(\mathfrak{b}) = j(\mathfrak{b}) \Leftrightarrow \mathfrak{b} \sim a^{-1}\mathfrak{b} \Leftrightarrow \mathfrak{a} \sim \mathcal{O}$.

▶ transitive: for every $j(\mathfrak{a}), j(\mathfrak{b})$ we have $\mathfrak{c}j(\mathfrak{a}) = j(\mathfrak{b})$ for some $[\mathfrak{c}] \in cl(\mathcal{O})$.

Such group actions are regular. If X is a G-set, the G-action is regular if for every $x, y \in X$ there is a **unique** $g \in G$ for which gx = y, and we call X a G-torsor.

If we fix $x_1 \in X$, we can make X a group isomorphic to G by defining x_g to be the unique $g \in G$ for which $gx_1 = x_g$, and defining $x_gx_h := x_{gh}$. If we don't want to fix x_1 , we can instead think of ratios (or differences) of elements.

Isogenies of elliptic curves over $\ensuremath{\mathbb{C}}$

Let $\phi: E_1 \to E_2$ be an isogeny of elliptic curves over \mathbb{C} , and let L_1 and L_2 be corresponding lattices, so $E_1 = E_{L_1}$ and $E_2 = E_{L_2}$. Recall that there is a unique $\alpha = \alpha_{\phi}$ with $\alpha L_1 \subseteq L_2$ such that the following diagram commutes:

Since we only care about lattices up to homethety, we can replace L_1 with αL_1 to make $\alpha = 1$; in other words, up to isomorphism, every isogeny $\phi \colon E_1 \to E_2$ over \mathbb{C} is induced by a lattice inclusion $L_1 \subseteq L_2$, and we then have

$$\# \ker \phi = [L_2 : L_1].$$

The CM action via isogenies

Now assume E_1/\mathbb{C} has CM by \mathcal{O} . Then L_1 is homothetic to an invertible \mathcal{O} -ideal \mathfrak{b} , and we may assume $L_1 = \mathfrak{b}$ and $E_1 = E_{\mathfrak{b}}$. If \mathfrak{a} is an invertible \mathcal{O} -ideal the inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1}\mathfrak{b}$ induces an isogeny

$$\phi_{\mathfrak{a}} \colon E_{\mathfrak{b}} \to E_{\mathfrak{a}^{-1}\mathfrak{b}} = \mathfrak{a}E_{\mathfrak{b}}$$

If E_2 also has CM by \mathcal{O} then L_2 is homothetic to an invertible \mathcal{O} -ideal \mathfrak{c} . If we replace \mathfrak{b} by $(N\mathfrak{c})\mathfrak{b}$ then \mathfrak{c} divides (hence contains) \mathfrak{b} , since $N\mathfrak{c} = \mathfrak{c}\overline{\mathfrak{c}}$. If we now put $\mathfrak{a} = \mathfrak{b}\mathfrak{c}^{-1}$ then the isogeny

$$\phi_{\mathfrak{a}} \colon E_{\mathfrak{b}} \to E_{\mathfrak{c}} = \mathfrak{a} E_{\mathfrak{b}}$$

induced by the inclusion $\mathfrak{b} \subseteq \mathfrak{c}$ corresponds to the action of \mathfrak{a} on $E_{\mathfrak{b}}$.

Now $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\operatorname{cl}(\mathcal{O})$ -torsor. Thus all elliptic curves E/\mathbb{C} with CM by \mathcal{O} are isogenous, and every isogeny between E with CM by \mathcal{O} has the form $E_{\mathfrak{b}} \to \mathfrak{a}E_{\mathfrak{b}}$.

Isogeny kernels

Definition

Let E/k be any elliptic curve with CM by an imaginary quadratic order \mathcal{O} , and let \mathfrak{a} be an \mathcal{O} -ideal. The \mathfrak{a} -torsion subgroup of E is defined by

$$E[\mathfrak{a}] := \{ P \in E(\bar{k}) : \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \},$$

where we are viewing each $\alpha \in \mathfrak{a} \subseteq \mathcal{O} \simeq \operatorname{End}(E)$ as an endomorphism.

Theorem

Let \mathcal{O} be an imaginary quadratic order, let E/\mathbb{C} be an elliptic curve with CM by \mathcal{O} , let a be an invertible \mathcal{O} -ideal, and let $\phi_{\mathfrak{a}} \colon E \to \mathfrak{a}E$ be the corresponding isogeny. Then (i) ker $\phi_{\mathfrak{a}} = E[\mathfrak{a}]$; (ii) deg $\phi_{\mathfrak{a}} = N\mathfrak{a}$. **Proof.** To the board!

Imaginary quadratic discriminants

Definition

Let $\mathcal{O} = [1, \tau]$ be an imaginary quadratic order. The discriminant of \mathcal{O} is the discriminant of the minimal polynomial of τ , which we can compute as

$$\operatorname{disc}(\mathcal{O}) = (\tau + \bar{\tau})^2 - 4\tau\bar{\tau} = (\tau - \bar{\tau})^2 = \det \begin{pmatrix} 1 & \tau \\ 1 & \bar{\tau} \end{pmatrix}^2.$$

If A is the area of a fundamental parallelogram of ${\mathcal O}$ then

disc(
$$\mathcal{O}$$
) = $(\tau - \bar{\tau})^2 = -4|\operatorname{im} \tau|^2 = -4A^2$,

thus the discriminant does not depend on our choice of τ , it is intrinsic to the lattice O.

Imaginary quadratic discriminants

Negative integers $D \equiv 0, 1 \mod 4$ are (imaginary quadratic) discriminants. If D is not u^2D_0 for some u > 1 and $D_0 \equiv 0, 1 \mod 4$ then D is fundamental.

Theorem

Let D be an imaginary quadratic discriminant. There is a unique imaginary quadratic order \mathcal{O} with $\operatorname{disc}(\mathcal{O}) = D = u^2 D_K$, where D_K is the fundamental discriminant of the maximal order \mathcal{O}_K in $K = \mathbb{Q}(\sqrt{D_K})$, and $u = [\mathcal{O}_K : \mathcal{O}]$.

Proof. See notes.

The index $u = [\mathcal{O}_K : \mathcal{O}]$ is the conductor of the order \mathcal{O} .