18.783 Elliptic Curves Lecture 17

Andrew Sutherland

November 9, 2023

Complex multiplication

We have an equivalence of categories between complex tori \mathbb{C} / L and elliptic curves E / \mathbb{C} that relates homethety classes of lattices L to isomorphism classes of E / \mathbb{C} via

$$
\begin{aligned}
\{\text { lattices } L \subseteq \mathbb{C}\} / & \sim \\
\sim & \sim \text { elliptic curves } E / \mathbb{C}\} / \simeq \\
L & \longmapsto E_{L}: y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L) \\
j(L) & =j\left(E_{L}\right)
\end{aligned}
$$

with ring isomorphisms

$$
\operatorname{End}(\mathbb{C} / L) \simeq \operatorname{End}\left(E_{L}\right) \simeq \mathcal{O}(L):=\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}
$$

The ring $\mathcal{O}(L) \simeq \operatorname{End}\left(E_{L}\right)$ is either \mathbb{Z}, or it is an order \mathcal{O} in an imaginary quadratic field and E_{L} has complex multiplication by \mathcal{O} and L is homothetic to an \mathcal{O}-ideal.

Proper \mathcal{O}-ideals and the ideal class group

The \mathcal{O}-ideals L for which $\operatorname{End}\left(E_{L}\right) \simeq \mathcal{O}$ are proper, meaning that $\mathcal{O}(L)=\mathcal{O}$. Note that $\mathcal{O} \subseteq \mathcal{O}(L)$ always holds, but in general $\mathcal{O}(L)$ be be larger than \mathcal{O}.

The sets

$$
\{L \subseteq \mathbb{C}: \mathcal{O}(L)=\mathcal{O}\} / \sim \longleftrightarrow\{E / \mathbb{C}: \operatorname{End}(E)=\mathcal{O}\} / \simeq
$$

are both in bijection with the ideal class group

$$
\operatorname{cl}(\mathcal{O}):=\{\text { proper } \mathcal{O} \text {-ideals } \mathfrak{a}\} / \sim
$$

where the equivalence relation on proper \mathcal{O}-ideals is defined by

$$
\mathfrak{a} \sim \mathfrak{b} \quad \Longleftrightarrow \quad a \mathfrak{a}=b \mathfrak{b} \text { for some nonzero } a, b \in \mathcal{O}
$$

and the group operation is $[\mathfrak{a}][\mathfrak{b}]=[\mathfrak{a b}]$.

Fractional ideals and class groups in general

Let \mathcal{O} be an integral domain with fraction field K.
For any $\lambda \in K^{\times}$and \mathcal{O}-ideal \mathfrak{a}, the \mathcal{O}-module

$$
\lambda \mathfrak{a}:=\{\lambda a: a \in \mathfrak{a}\} \subseteq K
$$

is a fractional \mathcal{O}-ideal. We can assume $\lambda=\frac{1}{a}$ for some $a \in \mathcal{O}$.
The product of two fraction ideals is another fractional ideal:

$$
(\lambda \mathfrak{a})\left(\lambda \mathfrak{a}^{\prime}\right):=\left(\lambda \lambda^{\prime}\right) \mathfrak{a} \mathfrak{a}^{\prime} .
$$

A fractional \mathcal{O}-ideal I is invertible if $I J=\mathcal{O}$ for some fractional \mathcal{O}-ideal J. The set of invertible fractional \mathcal{O}-ideals form a group $\mathcal{I}_{\mathcal{O}}$ under multiplication.
For every $\lambda \in K^{\times}$the fractional \mathcal{O}-ideal $(\lambda):=\lambda \mathcal{O}$ is invertible, with inverse $\left(\lambda^{-1}\right)$. Such fractional \mathcal{O}-ideals are principal, and they form a subgroup $\mathcal{P}_{\mathcal{O}} \subseteq \mathcal{I}_{\mathcal{O}}$. We now define $\operatorname{cl}(\mathcal{O}):=\mathcal{I}_{O} / \mathcal{P}_{\mathcal{O}}$ (we will prove our definitions of $\operatorname{cl}(\mathcal{O})$ are compatible).

The (absolute) norm of an ideal

Let K / k be a finite extension of fields. Multiplication by $\lambda \in K^{\times}$is an invertible linear transformation $M_{\alpha} \in \mathrm{GL}(K)$ of K as a k-vector space. The norm and trace of λ are

$$
\mathrm{N}_{K / k} \lambda:=\operatorname{det} M_{\lambda} \in k^{\times} \quad \mathrm{T}_{K / k} \lambda:=\operatorname{tr} M_{\lambda} \in k
$$

When $k=\mathbb{Q}$ we may write $\mathrm{N}:=N_{K / \mathbb{Q}}$ and $\mathrm{T}:=T_{K / \mathbb{Q}}$, and if K is an imaginary quadratic field embedded in \mathbb{C}, we have $\mathrm{N} \alpha=\alpha \bar{\alpha}$ and $\mathrm{T} \alpha=\alpha+\bar{\alpha}$.

Definition

Let \mathcal{O} be an order in a number field K. The norm of a nonzero \mathcal{O}-ideal \mathfrak{a} is the index

$$
N \mathfrak{a}:=[\mathcal{O}: \mathfrak{a}]=\#(\mathcal{O} / \mathfrak{a}) \in \mathbb{Z}_{>0}
$$

For any nonzero $\alpha \in \mathcal{O}$ we have $\mathrm{N}(\alpha)=|\mathrm{N} \alpha|$, since $\operatorname{det} M_{\alpha}$ is the signed volume of the fundamental parallelepipid of the lattice (α) in the \mathbb{Q}-vector space K.

Norms of fractional ideals

Proposition

Let \mathcal{O} be an order in a number field, $\alpha \in \mathcal{O}$ nonzero, and \mathfrak{a} a nonzero \mathcal{O}-ideal. Then

$$
\mathrm{N}(\alpha \mathfrak{a})=\mathrm{N}(\alpha) \mathrm{Na}
$$

Proof. $\mathrm{N}(\alpha \mathfrak{a})=[\mathcal{O}: \alpha \mathfrak{a}]=[\mathcal{O}: \mathfrak{a}][\mathfrak{a}: \alpha \mathfrak{a}]=[\mathcal{O}: \mathfrak{a}][\mathcal{O}: \alpha \mathcal{O}]=\mathrm{NaN}(\alpha)=\mathrm{N}(\alpha) \mathrm{Na}$.
Every fractional ideal in a number field can be written as $\frac{1}{a} \mathfrak{a}$ with $a \in \mathbb{Z}_{>0}$ (if $\alpha \in \mathcal{O}$ has minpoly $f \in \mathbb{Z}[x]$ then $\beta=(f(\alpha)-f(0)) / \alpha \in \mathcal{O}$ and $\alpha \beta=f(0) \in \mathbb{Z}$).

Definition

Let $\mathfrak{b}=\frac{1}{a} \mathfrak{a}$ be a nonzero fractional ideal in an order \mathcal{O} of a number field with $a \in \mathbb{Z}_{>0}$. The (absolute) norm of I is

$$
\mathrm{Nb}:=\frac{\mathrm{Na}}{\mathrm{Na} a} \in \mathbb{Q}_{>0}
$$

Proper and invertible fractional ideals

Let \mathcal{O} be an order in an imaginary quadratic field. For any fractional \mathcal{O}-ideal \mathfrak{b} we define $\mathcal{O}(\mathfrak{b}):=\{\alpha \in K: \alpha \mathfrak{b} \subseteq \mathfrak{b}\}$ and call \mathfrak{b} proper if $\mathcal{O}(\mathfrak{b})=\mathcal{O}$.

Lemma

Let \mathfrak{a} be a nonzero \mathcal{O}-ideal and let $\mathfrak{b}=\alpha \mathfrak{a}$ with $\alpha \in K^{\times}$.
Then \mathfrak{b} is proper $\Leftrightarrow \mathfrak{a}$ is proper, and \mathfrak{b} is invertible $\Leftrightarrow \mathfrak{a}$ is invertible.
Proof. First claim: $\{\alpha: \alpha \mathfrak{b} \subseteq \mathfrak{b}\}=\{\alpha: \alpha \lambda \mathfrak{a} \subseteq \lambda \mathfrak{a}\}=\{\alpha: \alpha \mathfrak{a} \subseteq \mathfrak{a}\}$.
Second: if \mathfrak{a} is invertible then $\mathfrak{b}^{-1}=\alpha^{-1} \mathfrak{a}^{-1}$, and if \mathfrak{b} is invertible then $\mathfrak{a}^{-1}=\alpha \mathfrak{b}^{-1}$.

Theorem

Let $\mathfrak{a}=[\alpha, \beta]$ be an \mathcal{O}-ideal. Then \mathfrak{a} is proper if and only if \mathfrak{a} is invertible. Whenever \mathfrak{a} is invertible we have $\mathfrak{a} \overline{\mathfrak{a}}=(\mathrm{Na})$, where $\overline{\mathfrak{a}}=[\bar{\alpha}, \bar{\beta}]$ and (Na) is the principal \mathcal{O}-ideal generated by the integer Na ; the inverse of \mathfrak{a} is the fractional \mathcal{O}-ideal $\mathfrak{a}^{-1}=\frac{1}{N \mathfrak{a}} \overline{\mathfrak{a}}$.
Proof. To the board!

The ideal class group

The fact that proper and invertible fractional ideals coincide implies that our two definitions of the ideal class group $\operatorname{cl}(\mathcal{O})$ as

- equivalence classes of proper \mathcal{O}-ideals
- the group of invertible fractional ideals modulo principal ideals conincide. In particular, $\operatorname{cl}(\mathcal{O})$ is a group!

Corollary

Let \mathcal{O} be an order in an imaginary quadratic field and let \mathfrak{a} and \mathfrak{b} be invertible (equivalently, proper) fractional \mathcal{O}-ideals. Then $\mathrm{N}(\mathfrak{a b})=\mathrm{NaNb}$.
Proof. It suffices to consider the case where \mathfrak{a} and \mathfrak{b} are invertible \mathcal{O}-ideals. We have

$$
(N(\mathfrak{a b}))=\mathfrak{a b} \overline{\mathfrak{a} \mathfrak{b}}=\mathfrak{a} \mathfrak{b} \overline{\mathfrak{a}} \overline{\mathfrak{b}}=\mathfrak{a} \overline{\mathfrak{a}} \mathfrak{b} \overline{\mathfrak{b}}=(N \mathfrak{a})(N \mathfrak{b})
$$

and it follows that $N(\mathfrak{a b})=N a N \mathfrak{b}$, since $N \mathfrak{a}, \mathrm{Nb}, N(\mathfrak{a b}) \in \mathbb{Z}_{>0}$.
Warning: The ideal norm is not multiplicative in general! (we used invertibility).

The class group action on CM elliptic curves

Let \mathcal{O} be an order in an imaginary quadratic field and let

$$
\operatorname{Ell}_{\mathcal{O}}:=\{j(E / \mathbb{C}): \operatorname{End}(E)=\mathcal{O}\}
$$

Every E / \mathbb{C} with $\operatorname{End}(\mathcal{O})$ is isomorphic to $E_{\mathfrak{b}}$ for some proper \mathcal{O}-ideal \mathfrak{b}. For any proper \mathcal{O}-ideal \mathfrak{a} let

$$
\mathfrak{a} E_{\mathfrak{b}}:=E_{\mathfrak{a}^{-1} \mathfrak{b}} .
$$

We use $E_{\mathfrak{a}^{-1} \mathfrak{b}}$ rather than $E_{\mathfrak{a} \mathfrak{b}}$ because $\mathfrak{a b} \subseteq \mathfrak{b}$ but we want $\mathfrak{b} \subseteq \mathfrak{a}^{-1} \mathfrak{b}$. We now define the action of $[\mathfrak{a}] \in \operatorname{cl}(\mathcal{O})$ via

$$
\begin{equation*}
[\mathfrak{a}] j\left(E_{\mathfrak{b}}\right):=j\left(E_{\mathfrak{a}^{-1}}\right), \tag{1}
\end{equation*}
$$

which we can also write as

$$
[\mathfrak{a}] j(\mathfrak{b}):=j\left(\mathfrak{a}^{-1} \mathfrak{b}\right)
$$

Note that this definition does not depend on the choice of representatives \mathfrak{a} and \mathfrak{b}.

The class group action on CM elliptic curves

If \mathfrak{a} is a nonzero principal \mathcal{O}-ideal then \mathfrak{b} and $\mathfrak{a}^{-1} \mathfrak{b}$ are homothetic and $\mathfrak{a} E_{\mathfrak{b}} \simeq E_{\mathfrak{b}}$. It follows that the identity element of $\operatorname{cl}(\mathcal{O})$ acts trivially on the set $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$.

For any proper \mathcal{O}-ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ we have

$$
\mathfrak{a}\left(\mathfrak{b} E_{\mathfrak{c}}\right)=\mathfrak{a} E_{\mathfrak{b}}{ }^{-1} \mathfrak{c}=E_{\mathfrak{a}^{-1} \mathfrak{b}^{-1} \mathfrak{c}}=E_{(\mathfrak{b a})^{-1} \mathfrak{c}}=(\mathfrak{b a}) E_{\mathfrak{c}}=(\mathfrak{a b}) E_{\mathfrak{c}} .
$$

We thus have a group action of $\operatorname{cl}(\mathcal{O})$ on $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$, and it has the following properties:

- free: every stabilizer is trivial, since $[\mathfrak{a}] j(\mathfrak{b})=j(\mathfrak{b}) \Leftrightarrow \mathfrak{b} \sim a^{-1} \mathfrak{b} \Leftrightarrow \mathfrak{a} \sim \mathcal{O}$.
- transitive: for every $j(\mathfrak{a}), j(\mathfrak{b})$ we have $\mathfrak{c} j(\mathfrak{a})=j(\mathfrak{b})$ for some $[\mathfrak{c}] \in \operatorname{cl}(\mathcal{O})$.

Such group actions are regular. If X is a G-set, the G-action is regular if for every $x, y \in X$ there is a unique $g \in G$ for which $g x=y$, and we call X a G-torsor.

If we fix $x_{1} \in X$, we can make X a group isomorphic to G by defining x_{g} to be the unique $g \in G$ for which $g x_{1}=x_{g}$, and defining $x_{g} x_{h}:=x_{g h}$. If we don't want to fix x_{1}, we can instead think of ratios (or differences) of elements.

Isogenies of elliptic curves over \mathbb{C}

Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny of elliptic curves over \mathbb{C}, and let L_{1} and L_{2} be corresponding lattices, so $E_{1}=E_{L_{1}}$ and $E_{2}=E_{L_{2}}$. Recall that there is a unique $\alpha=\alpha_{\phi}$ with $\alpha L_{1} \subseteq L_{2}$ such that the following diagram commutes:

Since we only care about lattices up to homethety, we can replace L_{1} with αL_{1} to make $\alpha=1$; in other words, up to isomorphism, every isogeny $\phi: E_{1} \rightarrow E_{2}$ over \mathbb{C} is induced by a lattice inclusion $L_{1} \subseteq L_{2}$, and we then have

$$
\# \operatorname{ker} \phi=\left[L_{2}: L_{1}\right]
$$

The CM action via isogenies

Now assume E_{1} / \mathbb{C} has CM by \mathcal{O}. Then L_{1} is homothetic to an invertible \mathcal{O}-ideal \mathfrak{b}, and we may assume $L_{1}=\mathfrak{b}$ and $E_{1}=E_{\mathfrak{b}}$. If \mathfrak{a} is an invertible \mathcal{O}-ideal the inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1} \mathfrak{b}$ induces an isogeny

$$
\phi_{\mathfrak{a}}: E_{\mathfrak{b}} \rightarrow E_{\mathfrak{a}^{-1} \mathfrak{b}}=\mathfrak{a} E_{\mathfrak{b}}
$$

If E_{2} also has CM by \mathcal{O} then L_{2} is homothetic to an invertible \mathcal{O}-ideal \mathfrak{c}. If we replace \mathfrak{b} by $(N \mathfrak{c}) \mathfrak{b}$ then \mathfrak{c} divides (hence contains) \mathfrak{b}, since $N \mathfrak{c}=\mathfrak{c} \overline{\mathfrak{c}}$. If we now put $\mathfrak{a}=\mathfrak{b c}^{-1}$ then the isogeny

$$
\phi_{\mathfrak{a}}: E_{\mathfrak{b}} \rightarrow E_{\mathfrak{c}}=\mathfrak{a} E_{\mathfrak{b}}
$$

induced by the inclusion $\mathfrak{b} \subseteq \mathfrak{c}$ corresponds to the action of \mathfrak{a} on $E_{\mathfrak{b}}$.
Now $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\operatorname{cl}(\mathcal{O})$-torsor. Thus all elliptic curves E / \mathbb{C} with CM by \mathcal{O} are isogenous, and every isogeny between E with CM by \mathcal{O} has the form $E_{\mathfrak{b}} \rightarrow \mathfrak{a} E_{\mathfrak{b}}$.

Isogeny kernels

Definition

Let E / k be any elliptic curve with CM by an imaginary quadratic order \mathcal{O}, and let \mathfrak{a} be an \mathcal{O}-ideal. The \mathfrak{a}-torsion subgroup of E is defined by

$$
E[\mathfrak{a}]:=\{P \in E(\bar{k}): \alpha(P)=0 \text { for all } \alpha \in \mathfrak{a}\}
$$

where we are viewing each $\alpha \in \mathfrak{a} \subseteq \mathcal{O} \simeq \operatorname{End}(E)$ as an endomorphism.

Theorem

Let \mathcal{O} be an imaginary quadratic order, let E / \mathbb{C} be an elliptic curve with $C M$ by \mathcal{O}, let \mathfrak{a} be an invertible \mathcal{O}-ideal, and let $\phi_{\mathfrak{a}}: E \rightarrow \mathfrak{a} E$ be the corresponding isogeny. Then
(i) $\operatorname{ker} \phi_{\mathfrak{a}}=E[\mathfrak{a}]$;
(ii) $\operatorname{deg} \phi_{\mathfrak{a}}=\mathrm{Na}$.

Proof. To the board!

Imaginary quadratic discriminants

Definition

Let $\mathcal{O}=[1, \tau]$ be an imaginary quadratic order. The discriminant of \mathcal{O} is the discriminant of the minimal polynomial of τ, which we can compute as

$$
\operatorname{disc}(\mathcal{O})=(\tau+\bar{\tau})^{2}-4 \tau \bar{\tau}=(\tau-\bar{\tau})^{2}=\operatorname{det}\left(\begin{array}{cc}
1 & \tau \\
1 & \bar{\tau}
\end{array}\right)^{2}
$$

If A is the area of a fundamental parallelogram of \mathcal{O} then

$$
\operatorname{disc}(\mathcal{O})=(\tau-\bar{\tau})^{2}=-4|\operatorname{im} \tau|^{2}=-4 A^{2}
$$

thus the discriminant does not depend on our choice of τ, it is intrinsic to the lattice \mathcal{O}.

Imaginary quadratic discriminants

Negative integers $D \equiv 0,1 \bmod 4$ are (imaginary quadratic) discriminants. If D is not $u^{2} D_{0}$ for some $u>1$ and $D_{0} \equiv 0,1 \bmod 4$ then D is fundamental.

Theorem

Let D be an imaginary quadratic discriminant. There is a unique imaginary quadratic order \mathcal{O} with $\operatorname{disc}(\mathcal{O})=D=u^{2} D_{K}$, where D_{K} is the fundamental discriminant of the maximal order \mathcal{O}_{K} in $K=\mathbb{Q}\left(\sqrt{D_{K}}\right)$, and $u=\left[\mathcal{O}_{K}: \mathcal{O}\right]$.
Proof. See notes.

The index $u=\left[\mathcal{O}_{K}: \mathcal{O}\right]$ is the conductor of the order \mathcal{O}.

