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Uniformization Theorem
Given a lattice L ⊆ C, let

EL : y2 = 4x3 − g2(L)x− g3(L),

denote the corresponding elliptic curve, equipped with the map

ΦL : C/L→ EL(C)

z 7→
{(
℘(z), ℘′(z)

)
z 6∈ L,

0 z ∈ L.

Over the course of the last two lectures we proved the following theorem.

Theorem (Uniformization Theorem)

The map L 7→ EL defines a bijection between between homethety classes of lattices
L ⊆ C and isomorphism classes of elliptic curves E/C in which each ΦL is an analytic
group isomorphism (in fact, an isomorphism of complex Lie groups).



Morphisms of complex tori
Definition
A morphism ϕ : C/L1 → C/L2 of complex tori is a map induced by a holomorphic
function f : C→ C such that the following diagram commutes:

C C

C/L1 C/L2

f

π1 π2

ϕ

Example
For each α ∈ C the holomorphic map z 7→ αz defines an analytic endomorphism of C.
When αL1 ⊆ L2 this induces a holomorphic group homomorphism

ϕα : C/L1 → C/L2

z + L1 7→ αz + L2
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Every morphism of complex tori is multiplication-by-α
Theorem
Let ϕ : C/L1 → C/L2 be a holomorphic map with ϕ(0) = 0.
There is a unique α ∈ C for which ϕ = ϕα.

Proof.
To the board!

Corollary
For any two lattices L1, L2 ⊆ C the map{

α ∈ C : αL1 ⊆ L2
}
→
{

morphisms ϕ : C/L1 → C/L2
}

α 7→ ϕα

is an isomorphism of groups. If L1 = L2 it is an isomorphism of commutative rings.
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Morphisms of complex tori and isogenies of elliptic curves
For i = 1, 2 let Li ⊆ C be a lattice, let Ei := ELi be the corresponding elliptic curve.
Let ℘i(z) := ℘(z;Li), and let Φi : C/Li → Ei(C).

Theorem
For any α ∈ C, the following are equivalent:
(i) αL1 ⊆ L2;
(ii) ℘2(αz) = u

(
℘1(z)

)
/v
(
℘1(z)

)
for some polynomials u, v ∈ C[x];

(iii) There is a unique φα ∈ Hom(E1, E2) such that the following diagram commutes:
C C/L1 E1(C)

C C/L2 E2(C)

α

Φ1

φα

Φ2

For every φ ∈ Hom(E1, E2) there is a unique α = αφ satisfying (1)–(3).
The maps φ 7→ αφ and α 7→ φα are inverse isomorphisms between the abelian groups
Hom(E1, E2) and {α ∈ C : αL1 ⊆ L2}.



Morphisms of complex tori and isogenies of elliptic curves
To prove our theorem relating morphisms of complex tori and elliptic curves, we need
the following lemma.

Recall that C(L) is the field of elliptic functions for the lattice L ⊆ C. The Weierstrass
℘-function ℘(z) = ℘(z;L) and its derivative ℘′(z) are both elements of C(L)

Lemma
Let L ⊆ C be a lattice. The following hold:
(i) C(L) = C(℘, ℘′);

(ii) C(L)even = C(℘);
(iii) if f ∈ C(L)even is holomorphic on C− L then f ∈ C[℘].

Proof.
To the board!



Endomorphism rings of complex tori and elliptic curves
We now specialize to the case L = L2 = L1, and put E = EL, in which case the group
{α ∈ C : αL ⊆ L} ' Hom(E,E) = End(E) becomes a ring, not just a group.

Corollary
Let L ⊆ C be a lattice and let E := EL. The following hold:
(i) The maps α 7→ φα and φ 7→ αφ are inverse ring isomorphisms

between {α ∈ C : αL ⊆ L} and End(E);
(ii) the involution φ 7→ φ̂ of End(E) corresponds to complex conjugation α 7→ ᾱ

in {α ∈ C : αL ⊆ L};
(iii) T(α) := α+ ᾱ = trφα and N(α) := αᾱ = deg φα = deg u = deg v + 1, where

u, v ∈ C[x] are as in the morphism/isogeny Theorem.

Proof.
To the board!



Complex multiplication
The corollary explains the origin of the term complex multiplication (CM).

When End(EL) is bigger than Z the extra endomorphisms in End(EL) are all
multiplication-by-α maps in End(C/L), for some α ∈ C− R that is an algebraic
integer in an imaginary quadratic field.

Corollary
Let E be an elliptic curve defined over C. Then End(E) is commutative and therefore
isomorphic to either Z or an order in an imaginary quadratic field.

Proof.
End(EL) ' {α ∈ C : αL ⊆ L} is commutative, so it cannot be an order in a
quaternion algebra.

The corollary also applies to elliptic curves over Q, number fields, or any field
embedded in C. It extends to all fields of characteristic 0 (via the Lefschetz principle).



Elliptic curves with complex multiplication

We have shown that for any lattice L ⊆ C we have ring isomorphisms

End(EL) ' {α ∈ C : αL ⊆ L} ' End(C/L).

We have been treating the isomorphism on the left as an equality, and it will be
convenient to do the same for the isomorphism on the right.

The endomorphism algebra End0(EL) is isomorphic to either Q or an imaginary
quadratic field, so we can always embed End0(EL) in C.

Viewing End(EL) as a subring of End0(EL), we have End(EL) = {α ∈ C : αL ⊆ L}.

When End(C/L) is an imaginary quadratic order O, we can embed End0(EL) in C so
that each multiplication-by-α endomorphism of C/L is φα ∈ End(EL) (versus φ̂α).

This is the normalized identification of End(EL) with End(C/L) = O, which we use.
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Tori with complex multiplication

Given an imaginary quadratic order O, is there a lattice L ⊆ C with End(C/L) = O?

Consider L = O. If α ∈ End(EO), then αO ⊆ O, so α ∈ O (note 1 ∈ O).
Conversely, if α ∈ O, then αO ⊆ O and α ∈ End(EO); thus End(EO) = O.
The same holds for any lattice homothetic to O. Indeed, the set {α ∈ C : αL ⊆ L}
does not change if we replace L with L′ = λL for any λ ∈ C×, so we are really only
interested in lattices up to homethety (and elliptic curves up to isomorphism).

But are there any lattices L not homothetic to O for which we have End(EL) = O?

We may assume L = [1, τ ] and write O = [1, ω], for an imaginary quadratic integer ω.

If End(EL) = O, then ω · 1 = ω ∈ L, so ω = m+ nτ , for some m,n ∈ Z with n 6= 0.

Thus nL = [n, nτ ] = [n, ω −m] ⊆ [1, ω] = O, so L is homothetic to a sublattice of O.
This sublattice is closed under multiplication by O, so L is homothetic to an O-ideal.
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Proper orders

The situation is a bit more complicated than it appears. While every lattice L for
which End(EL) = O is an O-ideal, the converse does not hold (unless O is the
maximal order OK). If we start with an arbitrary O-ideal L, then the set

O(L) := {α ∈ C : αL ⊆ L} = {α ∈ K : αL ⊆ L}

is an order in K, but it is not necessarily true that O(L) is equal to O.
For O 6= OK we can always find an O-ideal L for which O(L) strictly contains O.

Definition
Let O be an order in an imaginary quadratic field K, and let L be an O-ideal. We say
that L is a proper O-ideal if O(L) = O.
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The ideal class group
Recall that the product of two O-ideals a and b is the ideal generated by all products
ab with a ∈ a and b ∈ b, and that ideal multiplication is commutative and associative.

It is enough to consider products of generators, so if a = [a1, a2] and b = [b1, b2], then
ab is the ideal generated by the four elements a1b1, a1b2, a2b1, a2b2 ∈ O.

Since ab is an additive subgroup of O, it is a free Z-module of rank 2 and can be
written as [c1, c2] = [a1b1, a1b2, a2b1, a2b2] for some c1, c2 ∈ O.

Call two O-ideals a and b equivalent if αa = βb for some α, β ∈ O.
Equivalence is compatible with multiplication of ideals:

αa = βb and γc = δd =⇒ αγac = βδcd.

Definition
Let O be an order in an imaginary quadratic field. The ideal class group cl(O) is the
multiplicative group of equivalence classes of proper O-ideals.
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A preview of things to come...

Theorem
Let O be an order in an imaginary quadratic field. The ideal classes of cl(O) are in
bijection with the homethety classes of lattices L ⊆ C for which End(EL) ' O.


