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Elliptic curves over C

Our goal for the next two lectures is to prove Uniformization Theorem, an explicit
correspondence between elliptic curves over C and tori C/L defined by lattices L ⊆ C.

In particular, we will show that:

• Every lattice L ⊆ C can be used to define an elliptic curve EL/C.
• Every elliptic curve E/C arises as EL for some lattice L.
• There is an analytic isomorphism

C/L Φ−→ EL/C

that induces an isomorphism of abelian groups C/L ' E(C)
(addition in C modulo L induces the elliptic curve group law on E(C)).



Lattices in C
Definition
A lattice [ω1, ω2] in C is a Z-module ω1Z + ω2Z ⊆ C with R-span C.

Example
Let τ be a root of x2 − bx+ c with b, c ∈ Z and b2 − 4c < 0. The imaginary quadratic
order O = Z[τ ] corresponds to the lattice [1, τ ] in C.

Note that C and L are both topological groups (C has the Euclidean topology, L has
the discrete topology), and the torus C/L is a compact group.

Definition
A fundamental parallelogram for L = [ω1, ω2] is any set of the form

Fα = {α+ t1ω1 + t2ω2 : α ∈ C, 0 ≤ t1, t2 < 1}.

We may identify the points in a fundamental parallelogram with the points of C/L.



Lattices in C

ω1

ω2



Holomorphic and meromorphic functions
Definition
A function f : Ω→ C on an open neighborhood Ω of z0 ∈ C is holomorphic at z0 if

f ′(z0) := lim
z→z0

f(z)− f(z0)
z − z0

exists. We say that f is holomorphic on Ω if it is holomorphic at every z0 ∈ Ω.

Definition
Let k ∈ Z>0. A complex function f has a zero of order k at z0 if there is a holomorphic
function g with g(z0) 6= 0 such that f(z) = (z − z0)kg(z) on some open neighborhood
of z0. We say f has a pole of order k at z0 if 1/f has a zero of order k at z0.

Definition
A complex function f is meromorphic on an open set Ω if it is holomorphic on Ω except
for a discrete set of poles (every pole has an open neighborhood with no other poles).



The order of vanishing of a meromorphic function

Definition
If f is meromorphic on an open neighborhood of z0 ∈ C we define

ordz0(f) :=


n if f has a zero of order n at z0,

−n if f has a pole of order n at z0,

0 otherwise.

For any open Ω ⊆ C the set of meromorphic functions f : Ω→ C form a field C(Ω).

For each z0 ∈ Ω we have
• ordz0(fg) = ordz0(f) + ordz0(g) for all f, g ∈ C(Ω)×;
• ordz0(f + g) ≥ min(ordz0(f), ordz0(g)) for all f, g ∈ C(Ω)×.

Defining ordz0(0) :=∞ yields a discrete valuation on the field C(Ω).



Elliptic functions

Definition
An elliptic function for a lattice L in C is a complex function f such that
• f is meromorphic on C;
• f is L-periodic, meaning f(z + ω) = f(z) for all ω ∈ L.

Elliptic functions can be viewed as meromorphic functions on C/L.

Constant functions are elliptic functions, as are sums, differences, products, and
quotients of elliptic functions; C(L) denotes the field of elliptic functions for L.

Definition
The order of an elliptic function is the sum of the orders of the poles it has in any
fundamental parallelogram (the number of poles counted with multiplicity).

The elliptic functions of order zero are the constant functions (by Liouville’s Theorem).



Elliptic functions

Theorem
Let f be an elliptic function for a lattice L in C. When counted with multiplicity the
number of zeros of f in any fundamental parallelogram for L is equal to its order.
Proof: Let F be a fundamental parallelogram for L whose boundary ∂F contains no
zeros or poles of f . Then

1
2πi

∫
∂F

f ′(z)
f(z) = 0 =

∑
ω∈F0

ordω(f).

by Cauchy’s argument principle (see notes). The theorem follows.



Eisenstein series
Definition
Let L be a lattice in C and let k ∈ Z>2. The weight-k Eisenstein series for L is the sum

Gk(L) =
∑
ω∈L∗

1
ωk
,

where L∗ = L− {0}. For L = [ω1, ω2] we put τ = ±ω2/ω1 ∈ H so L ' [1, τ ] and

Gk(τ) := Gk([1, τ ]) =
∑

m,n∈Z
(m,n)6=(0,0)

1
(m+ nτ)k .

satisfies Gk(τ + 1) = Gk(τ) and Gk(−1/τ) = τkGk(τ), making it a modular form.

Remark
If k is odd then Gk(L) = 0 for every lattice L in C; we are only interested in even k.



The Weierstrass ℘-function
Definition
The Weierstrass ℘-function of a lattice L in C is defined by

℘(z) := ℘(z;L) := 1
z2 +

∑
ω∈L∗

( 1
(z − ω)2 −

1
ω2

)
.

Theorem
The function ℘(z;L) is holomorphic at every z0 6∈ L and meromorphic on C, with a
double pole at each ω ∈ L. Its derivative ℘′(z;L) has a triple pole at each ω ∈ L.
Proof: To the board!

Corollary
℘ is an even elliptic function of order 2 and ℘′ is an odd elliptic function of order 3.
Proof: To the board!



The Weierstrass ℘-function
Lemma
The Laurent series expansion of ℘(z) = ℘(z;L) at z = 0 is

℘(z) = 1
z2 +

∞∑
n=1

(2n+ 1)G2n+2(L)z2n,

where Gk(L) denotes the Eisenstein series of weight k.
Proof: To the board!

Theorem
The function ℘(z) = ℘(z;L) satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L),

where g2(L) := 60G4(L) and g3(L) := 140G6(L).
Proof: To the board!



Elliptic curves from lattices

If we put x := ℘(z) and y := ℘′(z), the differential equation for ℘ looks like

EL : y2 = 4x3 − g2(L)x− g3(L).

which is an elliptic curve over C if it is nonsingular. If the partial derivatives of
zy2 = 4x3 − g2(L)xz2 − g3(L)z3 simultaneously vanish at (x0 : y0 : z0) 6= 0 then

12x2
0 − g2(L)z2

0 = 0, 2z0y0 = 0, y2
0 + 2g2(L)x0z0 + 3g3(L)z2

0 = 0.

We cannot have z0 = 0, since this would force x0 = y0 = 0, so we may assume z0 = 1.
Then y0 = 0, and x0 = −3g3(L)/(2g2(L)), and g2(L)3 − 27g3(L)2 = 0. Thus if

∆(L) := g2(L)3 − 27g3(L)2

is nonzero, EL is an elliptic curve over C.



Elliptic curves from lattices

Lemma
Let L be a lattice in C. Then z 6∈ L is a zero of ℘′(z;L) if and only if 2z ∈ L.
Proof: To the board!

Corollary
For every lattice L in C, the discriminant ∆(L) is nonzero.
Proof: To the board!

Thus every lattice L in C gives rise to an elliptic curve EL/C, and the map

Φ: C/L→ EL(C)
z 7→ (℘(z), ℘′(z))

sends points on C/L to points on the elliptic curve EL.


