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Primality proving

• Primality proving is one of the founding problems of computational number theory.

• A factorization cannot be considered complete without a proof of primality.

• Probabilistic factorization algorithms will typically not terminate on prime inputs.

• Elliptic curves play a crucial role in practical primality proving.

• Existing polynomial-time algorithms are not as practical and do not provide a
useful certificate of primality.

• Algorithms for primes of specific forms such as Mersenne primes are very efficient
but are not applicable in any generality.

• There are very efficient probablistic algorithms for proving compositeness without
providing a factorization, but these do not prove primality.



Using Fermat’s little theorem to prove compositeness

Theorem (Fermat 1640)

If N is prime then aN ≡ a mod N for all integers a.

Example
The fact that 291 ≡ 37 mod 91 proves that 91 is not prime (without factoring it).

Example
We have 2341 ≡ 2 mod 341 (which proves nothing), but 3341 ≡ 168 mod 341 proves
that 341 is not prime (thus we may need to try different values of a).

Example
We have a561 ≡ a mod 561 for every integer a. But 561 = 3 · 11 · 17 is not prime!



Carmichael numbers

Definition
A composite N ∈ Z such that aN ≡ a mod N for all a ∈ Z is a Carmichael number.

The sequence of Carmichael numbers begins 561, 1105, 1729, 2821, . . ., and forms
sequence A002997 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Statistics on the 20,138,200 Carmichael numbers less than 1021 can be found here.

Theorem (Alford-Granville-Pomerance 1994)

The sequence of Carmichael numbers is infinite.

There are thus infinitely many composite integers that will pass any primality test
based on Fermat’s little theorem.

https://oeis.org/A002997
http://www.s369624816.websitehome.co.uk/rgep/cartable.html


A better test for compositeness

Recall the Euler function φ(N) := #(Z/NZ)×.

Theorem
A positive integer N is prime if and only if φ(N) = N − 1.
Proof: Every nonzero residue class in Z/NZ is invertible if and only if N is prime.

Lemma
Let p = 2st+ 1 be prime with t odd and suppose a ∈ Z is not divisible by p.
Exactly one of the following holds:
(i) at ≡ 1 mod p.
(ii) a2it ≡ −1 mod p for some 0 ≤ i < s.
Proof: To the blackboard!



A witness for compositeness

Definition
Let N = 2st+ 1 with t odd. An integer a 6≡ 0 mod N is a witness for N if

(i)at 6≡ 1 mod N and (ii)a2it 6≡ −1 mod N for 0 ≤ i < s.

If N has a witness a then N is composite (and a is a certificate of this fact).

Theorem (Monier-Rabin 1980)

Let N be an odd composite integer.
A random integer a ∈ [1, N − 1] is a witness for N with probability at least 3/4.
Proof: See notes.

If we pick 100 random a ∈ [1, N − 1] we are nearly certain to find a witness if N is
composite. But if we do not find one we cannot say whether N is prime or composite.



The Miller-Rabin algorithm

Algorithm
Given an odd integer N > 1:

1. Pick a random integer a ∈ [1, N − 1].
2. Write N = 2st+ 1, with t odd, and compute b = at mod N .

If b ≡ ±1 mod N , return true (a is not a witness, N could be prime).
3. For i from 1 to s− 1:

3.1 Set b← b2 mod N .
3.2 If b ≡ −1 mod N , return true (a is not a witness, N could be prime).

4. Return false (a is a witness, N is definitely not prime).

On prime inputs this algorithm will always output true.
On composite inputs it will output false with probability at least 3/4.



The Miller-Rabin algorithm

Example
For N = 561 we have 561 = 24 · 35 + 1, so s = 4 and t = 35, and for a = 2 we have

235 ≡ 263 mod 561,

which is not ±1 mod 561 so we continue and compute

2632 ≡ 166 mod 561,
1662 ≡ 67 mod 561,
672 ≡ 1 mod 561.

We never hit −1, so a = 2 is a witness for N = 561 and we return false,
since we have proved that 561 is not prime.



How good is the Miller-Rabin test?

The Miller-Rabin test will detect composite inputs with probability at least 3/4.
By running it k times we can amplify this probality to 1− 2−2k.
But its performance on random composite inputs is much better than this.

Theorem (Damgard-Landrock-Pomerance 1993)

Let N be a random odd integer in [2k−1, 2k] and a a random integer in [1, N − 1].
Then Pr[N is prime | a is not a witness for N ] ≥ 1− k2 · 42−

√
k.

Some typical values of k:

k = 256 : 1− k2 · 42−
√

k = 1− 2−12,

k = 4096 : 1− k2 · 42−
√

k = 1− 2−100.

Note that this applies to just a single test and can also be amplified!



Elliptic curve primality proving

Definition
Let P =(Px :Py :Pz) be a point on an elliptic curve E/Q, with Px, Py, Pz ∈ Z.
For N ∈ Z≥0, if Pz ≡ 0 mod N then we say that P is zero mod N , and otherwise we
say that P is nonzero mod N . If gcd(Pz, N) = 1 then P is strongly nonzero mod N .

If P is strongly nonzero mod N , then P is nonzero mod p for every prime p|N .
When N is prime, the notions of nonzero and strongly nonzero coincide.

Theorem (Goldwasser-Kilian 1986)

Let E/Q be an elliptic curve, and let M,N > 1 be integers with M > (N1/4 + 1)2

and N ⊥ ∆(E), and let P ∈ E(Q). If MP is zero mod N and (M/`)P is strongly
nonzero mod N for every prime `|M then N is prime.
Proof: To the blackboard!



Primality certificates

To apply the Goldwasser-Killian theorem, we need to know the prime factors q of M .
In particular, we need to be sure that these q are actually prime!
To simplify matters, we restrict to the case that M = q is prime.

Definition
An elliptic curve primality certificate for p is a tuple of integers

(p,A,B, x1, y1, q),

where P = (x1 : y1 : 1) is a point on the elliptic curve E : y2 = x3 +Ax+B over Q,
the integer p > 1 is prime to ∆(E), and qP is zero mod p with q > (p1/4 + 1)2.

Note that P = (x1 : y1 : 1) is strongly nonzero mod p, since its z-coordinate is 1.
A primality certificate (p, . . . , q) reduces the question of p’s primality to that of q.
A chain of such certificates can lead to a q that is small enough for trial division.



Algorithm (Goldwasser-Kilian ECPP)

Given an odd integer p (a candidate prime), and a bound b, with p > b > 5, construct a
primality certificate (p,A,B, x1, y1, q) with q ≤ (√p+ 1)2/2 or prove p composite.

1. Pick random integers A, x0, y0 ∈ [0, p− 1], and set B = y2
0 − x3

0 −Ax0.
Repeat until gcd(4A3 + 27B2, p) = 1, then define E : y2 = x3 +Ax+B.

2. Use Schoof’s algorithm to compute m = #E(Fp) assuming that p is prime.
If anything goes wrong (which it might!), or if m 6∈ H(p), then return composite.

3. Write m = cq, where c is b-smooth and q is b-coarse.
If c = 1 or q ≤ (p1/4 + 1)2, then go to step 1.

4. (optional) Perform a Miller-Rabin test on q. If it returns false then go to step 1.
5. Compute P = (Px : Py : Pz) = c · (x0 : y0 : 1) on E, working modulo p.

If gcd(Pz, p) 6= 1, go to step 1, else let x1 ≡ Px/Pz mod p, y1 ≡ Py/Pz mod p.
6. Compute Q = (Qx : Qy : Qz) = q · (x1 : y1 : 1) on E, working modulo p.

If Qz 6≡ 0 mod p then return composite.
7. If q > b, then recursively verify that q is prime using inputs q and b; otherwise, verify that

q is prime by trial division. If q is found to be composite, go to step 1.
8. Output the certificate (p,A, B̃, x1, y1, q) such that y2

1 = x3
1 +Ax1 + B̃ (over Z).



Complexity analysis and subsequent improvements

You will analyze the hueristic complexity of this algorithm assuming that m is a
random integer (in which case it is a polynomial-time Las Vegas algorithm)

Goldwasser-Killian proved this for all but a subexponentially small set of inputs.
Adelman-Huang proved this for all inputs by modifying the algorithm.
(they ”reduce” the problem to proving the primality of a random prime p′ ≈ p2).

The Goldwasser-Killian algorithm has been superseded by the “fast ECPP” algorithm
developed by Atkin and Morain, which uses the theory of complex multiplication to
obtain a much better heuristic expected running time: Õ(n4). This algorithm can
handle primes with tens of thousands (but not millions) of digits.

The AKS algorithm (as originally proposed) has a deterministic complexity of Õ(n10.5).
This can be improved to Õ(n6), and there is a randomized version that can be shown
to run in Õ(n4) expected time, but it is still much slower than ECPP.


