18.783 Elliptic Curves Lecture 11

Andrew Sutherland

October 19, 2023

Primality proving

- Primality proving is one of the founding problems of computational number theory.
- A factorization cannot be considered complete without a proof of primality.
- Probabilistic factorization algorithms will typically not terminate on prime inputs.
- Elliptic curves play a crucial role in practical primality proving.
- Existing polynomial-time algorithms are not as practical and do not provide a useful certificate of primality.
- Algorithms for primes of specific forms such as Mersenne primes are very efficient but are not applicable in any generality.
- There are very efficient probablistic algorithms for proving compositeness without providing a factorization, but these do not prove primality.

Using Fermat's little theorem to prove compositeness

Theorem (Fermat 1640)

If N is prime then $a^{N} \equiv a \bmod N$ for all integers a.

Example

The fact that $2^{91} \equiv 37 \bmod 91$ proves that 91 is not prime (without factoring it).

Example

We have $2^{341} \equiv 2 \bmod 341$ (which proves nothing), but $3^{341} \equiv 168 \bmod 341$ proves that 341 is not prime (thus we may need to try different values of a).

Example

We have $a^{561} \equiv a$ mod 561 for every integer a. But $561=3 \cdot 11 \cdot 17$ is not prime!

Carmichael numbers

Definition

A composite $N \in \mathbb{Z}$ such that $a^{N} \equiv a \bmod N$ for all $a \in \mathbb{Z}$ is a Carmichael number.

The sequence of Carmichael numbers begins $561,1105,1729,2821, \ldots$, and forms sequence A002997 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Statistics on the 20,138,200 Carmichael numbers less than 10^{21} can be found here.

Theorem (Alford-Granville-Pomerance 1994)

The sequence of Carmichael numbers is infinite.

There are thus infinitely many composite integers that will pass any primality test based on Fermat's little theorem.

A better test for compositeness

Recall the Euler function $\phi(N):=\#(\mathbb{Z} / N \mathbb{Z})^{\times}$.

Theorem

A positive integer N is prime if and only if $\phi(N)=N-1$.
Proof: Every nonzero residue class in $\mathbb{Z} / N \mathbb{Z}$ is invertible if and only if N is prime.

Lemma

Let $p=2^{s} t+1$ be prime with t odd and suppose $a \in \mathbb{Z}$ is not divisible by p. Exactly one of the following holds:
(i) $a^{t} \equiv 1 \bmod p$.
(ii) $a^{2^{i} t} \equiv-1 \bmod p$ for some $0 \leq i<s$.

Proof: To the blackboard!

A witness for compositeness

Definition

Let $N=2^{s} t+1$ with t odd. An integer $a \not \equiv 0 \bmod N$ is a witness for N if

$$
\text { (i) } a^{t} \not \equiv 1 \bmod N \quad \text { and } \quad \text { (ii) } a^{2^{i} t} \not \equiv-1 \bmod N \text { for } 0 \leq i<s .
$$

If N has a witness a then N is composite (and a is a certificate of this fact).

Theorem (Monier-Rabin 1980)

Let N be an odd composite integer.
A random integer $a \in[1, N-1]$ is a witness for N with probability at least 3/4.
Proof: See notes.

If we pick 100 random $a \in[1, N-1]$ we are nearly certain to find a witness if N is composite. But if we do not find one we cannot say whether N is prime or composite.

The Miller-Rabin algorithm

Algorithm

Given an odd integer $N>1$:

1. Pick a random integer $a \in[1, N-1]$.
2. Write $N=2^{s} t+1$, with t odd, and compute $b=a^{t} \bmod N$. If $b \equiv \pm 1 \bmod N$, return true (a is not a witness, N could be prime).
3. For i from 1 to $s-1$:
3.1 Set $b \leftarrow b^{2} \bmod N$.
3.2 If $b \equiv-1 \bmod N$, return true (a is not a witness, N could be prime).
4. Return false (a is a witness, N is definitely not prime).

On prime inputs this algorithm will always output true.
On composite inputs it will output false with probability at least $3 / 4$.

The Miller-Rabin algorithm

Example

For $N=561$ we have $561=2^{4} \cdot 35+1$, so $s=4$ and $t=35$, and for $a=2$ we have

$$
2^{35} \equiv 263 \bmod 561,
$$

which is not $\pm 1 \bmod 561$ so we continue and compute

$$
\begin{aligned}
263^{2} & \equiv 166 \bmod 561 \\
166^{2} & \equiv 67 \bmod 561 \\
67^{2} & \equiv 1 \bmod 561
\end{aligned}
$$

We never hit -1 , so $a=2$ is a witness for $N=561$ and we return false, since we have proved that 561 is not prime.

How good is the Miller-Rabin test?

The Miller-Rabin test will detect composite inputs with probability at least $3 / 4$. By running it k times we can amplify this probality to $1-2^{-2 k}$.
But its performance on random composite inputs is much better than this.

Theorem (Damgard-Landrock-Pomerance 1993)

Let N be a random odd integer in $\left[2^{k-1}, 2^{k}\right]$ and a a random integer in $[1, N-1]$. Then $\operatorname{Pr}[N$ is prime $\mid a$ is not a witness for $N] \geq 1-k^{2} \cdot 4^{2-\sqrt{k}}$.

Some typical values of k :

$$
\begin{array}{cl}
k=256: & 1-k^{2} \cdot 4^{2-\sqrt{k}}=1-2^{-12} \\
k=4096: & 1-k^{2} \cdot 4^{2-\sqrt{k}}=1-2^{-100} .
\end{array}
$$

Note that this applies to just a single test and can also be amplified!

Elliptic curve primality proving

Definition

Let $P=\left(P_{x}: P_{y}: P_{z}\right)$ be a point on an elliptic curve E / \mathbb{Q}, with $P_{x}, P_{y}, P_{z} \in \mathbb{Z}$. For $N \in \mathbb{Z}_{\geq 0}$, if $P_{z} \equiv 0 \bmod N$ then we say that P is zero $\bmod N$, and otherwise we say that P is nonzero $\bmod N$. If $\operatorname{gcd}\left(P_{z}, N\right)=1$ then P is strongly nonzero $\bmod N$.

If P is strongly nonzero $\bmod N$, then P is nonzero $\bmod p$ for every prime $p \mid N$. When N is prime, the notions of nonzero and strongly nonzero coincide.

Theorem (Goldwasser-Kilian 1986)

Let E / \mathbb{Q} be an elliptic curve, and let $M, N>1$ be integers with $M>\left(N^{1 / 4}+1\right)^{2}$ and $N \perp \Delta(E)$, and let $P \in E(\mathbb{Q})$. If $M P$ is zero $\bmod N$ and $(M / \ell) P$ is strongly nonzero $\bmod N$ for every prime $\ell \mid M$ then N is prime.
Proof: To the blackboard!

Primality certificates

To apply the Goldwasser-Killian theorem, we need to know the prime factors q of M. In particular, we need to be sure that these q are actually prime!
To simplify matters, we restrict to the case that $M=q$ is prime.

Definition

An elliptic curve primality certificate for p is a tuple of integers

$$
\left(p, A, B, x_{1}, y_{1}, q\right)
$$

where $P=\left(x_{1}: y_{1}: 1\right)$ is a point on the elliptic curve $E: y^{2}=x^{3}+A x+B$ over \mathbb{Q}, the integer $p>1$ is prime to $\Delta(E)$, and $q P$ is zero $\bmod p$ with $q>\left(p^{1 / 4}+1\right)^{2}$.

Note that $P=\left(x_{1}: y_{1}: 1\right)$ is strongly nonzero $\bmod p$, since its z-coordinate is 1 . A primality certificate (p, \ldots, q) reduces the question of p 's primality to that of q. A chain of such certificates can lead to a q that is small enough for trial division.

Algorithm (Goldwasser-Kilian ECPP)

Given an odd integer p (a candidate prime), and a bound b, with $p>b>5$, construct a primality certificate $\left(p, A, B, x_{1}, y_{1}, q\right)$ with $q \leq(\sqrt{p}+1)^{2} / 2$ or prove p composite.

1. Pick random integers $A, x_{0}, y_{0} \in[0, p-1]$, and set $B=y_{0}^{2}-x_{0}^{3}-A x_{0}$. Repeat until $\operatorname{gcd}\left(4 A^{3}+27 B^{2}, p\right)=1$, then define $E: y^{2}=x^{3}+A x+B$.
2. Use Schoof's algorithm to compute $m=\# E\left(\mathbb{F}_{p}\right)$ assuming that p is prime. If anything goes wrong (which it might!), or if $m \notin \mathcal{H}(p)$, then return composite.
3. Write $m=c q$, where c is b-smooth and q is b-coarse. If $c=1$ or $q \leq\left(p^{1 / 4}+1\right)^{2}$, then go to step 1 .
4. (optional) Perform a Miller-Rabin test on q. If it returns false then go to step 1.
5. Compute $P=\left(P_{x}: P_{y}: P_{z}\right)=c \cdot\left(x_{0}: y_{0}: 1\right)$ on E, working modulo p. If $\operatorname{gcd}\left(P_{z}, p\right) \neq 1$, go to step 1, else let $x_{1} \equiv P_{x} / P_{z} \bmod p, y_{1} \equiv P_{y} / P_{z} \bmod p$.
6. Compute $Q=\left(Q_{x}: Q_{y}: Q_{z}\right)=q \cdot\left(x_{1}: y_{1}: 1\right)$ on E, working modulo p. If $Q_{z} \not \equiv 0 \bmod p$ then return composite.
7. If $q>b$, then recursively verify that q is prime using inputs q and b; otherwise, verify that q is prime by trial division. If q is found to be composite, go to step 1 .
8. Output the certificate $\left(p, A, \tilde{B}, x_{1}, y_{1}, q\right)$ such that $y_{1}^{2}=x_{1}^{3}+A x_{1}+\tilde{B}$ (over \mathbb{Z}).

Complexity analysis and subsequent improvements

You will analyze the hueristic complexity of this algorithm assuming that m is a random integer (in which case it is a polynomial-time Las Vegas algorithm)

Goldwasser-Killian proved this for all but a subexponentially small set of inputs. Adelman-Huang proved this for all inputs by modifying the algorithm. (they "reduce" the problem to proving the primality of a random prime $p^{\prime} \approx p^{2}$).

The Goldwasser-Killian algorithm has been superseded by the "fast ECPP" algorithm developed by Atkin and Morain, which uses the theory of complex multiplication to obtain a much better heuristic expected running time: $\tilde{O}\left(n^{4}\right)$. This algorithm can handle primes with tens of thousands (but not millions) of digits.

The AKS algorithm (as originally proposed) has a deterministic complexity of $\tilde{O}\left(n^{10.5}\right)$. This can be improved to $\tilde{O}\left(n^{6}\right)$, and there is a randomized version that can be shown to run in $\tilde{O}\left(n^{4}\right)$ expected time, but it is still much slower than ECPP.

