18.783 Elliptic Curves Lecture 10

Andrew Sutherland

October 17, 2023

Lecture 9 recap: generic DLP bounds

Pohlig-Hellman: $O(n \log n + n\sqrt{p})$, where $n = \log N$, largest prime p|N.

Baby-steps giant-steps: $(2+o(1))\sqrt{N}$ time, $(2+o(1))\sqrt{N}$ space.

Pollard-ho (Las Vegas): $(\sqrt{\pi/2} + o(1))\sqrt{N}$ expected time, $O(\log N)$ space.

Theorem (Shoup)

Let G be cyclic group of prime order N.

- Every deterministic generic algorithm for the discrete logarithm problem in G uses at least $(\sqrt{2} + o(1))\sqrt{N}$ group operations.
- Every Las Vegas generic algorithm for the discrete logarithm problem in G expects to use at least $(\sqrt{2}/2 + o(1))\sqrt{N}$ group operations.

Shoup's lower bounds match the best upper bounds to within a factor of 2.

Index calculus: a non-generic algorithm for the DLP

Let $G = \langle \alpha \rangle = (\mathbb{Z}/p\mathbb{Z})^{\times}$ and identify G with $[1,N] \cap \mathbb{Z}$, where N = #G = p-1. For $e \in \mathbb{Z}$ we can use the prime factorization $\alpha^e \beta^{-1} = \prod_i p_i^{e_i}$ to obtain a relation

$$e_1 \log_{\alpha} p_1 + \dots + e_b \log_{\alpha} p_b + \log_{\alpha} \beta = e. \tag{1}$$

which would allow us to compute $\log_{\alpha} \beta$ if we knew the values of $\log_{\alpha} p_i$.

Our plan: Pick a smallish set of primes $S = \{p : p \leq B\} = p_1, \dots p_b$ (the factor base), and generate relations as in (1) by picking random $e \in [1, N]$ and attempting to factor $\alpha^e \beta^{-1}$ over our factor base (e.g. by trial division, or something more clever).

How we win: Collect relations that uniquely determine $\log_{\alpha} p_1, \ldots, \log_{\alpha} p_b, \log_{\alpha} \beta$ and use linear algebra over the ring $\mathbb{Z}/N\mathbb{Z}$ to solve the system for $\log_{\alpha} \beta$.

When we expect to win: After about $\pi(B) \cdot N/\psi(N,B)$ attempts, where $\psi(N,B)$ is the number of B-smooth integers in [1,N], those with all prime factors less than B.

Optimizing the smoothness bound ${\it B}$

Theorem (Canfield–Erdős-Pomerance)

As $u, x \to \infty$ with $u < (1 - \epsilon) \log x / \log \log x$ we have $\psi(x, x^{1/u}) = xu^{-u + o(u)}$.

With trial division factoring takes $O(\pi(B)\mathsf{M}(\log N))$ time and we expect to need

$$O(\pi(B)u^u\pi(B)\mathsf{M}(\log N)) \approx B^2u^u = N^{2/u}u^u$$

time to get enough relations, where $u := \log N / \log B$ so that $N^{1/u} = B$.

To minimize $f(u) := \log(N^{2/u}u^u) = \frac{2}{u}\log N + u\log u$ we want to choose u so that

$$f'(u) = -2u^{-2}\log N + 2(uN)^{-1} + \log u + 1 = 0.$$

Ignoring O(1) terms, we want $u^2 \log u \approx 2 \log N$, meaning $u \approx 2 \sqrt{\log N / \log \log N}$.

Expected running time of our index calculus algorithm

Our choice of $u \approx 2\sqrt{\log N/\log \log N}$ yields the smoothness bound

$$B = N^{1/u} = \exp(u^{-1} \log N) = \exp(1/2\sqrt{\log N \log \log N}) = L_N[1/2, 1/2],$$

where we have used the standard subexponential asymptotic notation

$$L_N[a,c] := \exp((c+o(1))(\log N)^a(\log\log N)^{1-a}),$$

interpolating $L_N[0,c]=(\log N)^{c+o(1)}$ (polynomial), $L_N[1,c]=N^{c+o(1)}$ (exponential).

Assuming the linear algebra is negligible (it is), the total expected time is

$$B^2u^u = L_N[1/2, 1/2]^2 \cdot L_N[1/2, 1] = L_N[1/2, 2].$$

With ECM, smoothness testing becomes negligible and we can achieve $L_N[1/2, \sqrt{2}]$. More sophisticated techniques (NFS) heuristically yield $L_N[1/3, (64/9)^{1/3}]$.

Current state of the art

For finite fields $\mathbb{F}_{p^n}\simeq \mathbb{F}_p[x]/(f)$ the function field sieve uses a factor base of low degree polynomials in $\mathbb{F}_p[x]$ representing elements of \mathbb{F}_{p^n} to obtain an $L_N[1/3,c]$ bound.

In 2013 Joux found an $L_N[1/4,c]$ -time algorithm for $\mathbb{F}_{p^n}^{\times}$ for suitable p and n.

Joux and collaborators improved these techniques rapidly, eventually leading to a DLP algorithm for $\mathbb{F}_{p^n}^{\times}$ with p=O(n) that runs in time $n^{\log n}$, which is better than $L_N[\epsilon,c]$ for any $\epsilon,c>0$ (quasi-polynomial time).

Instant poll

For $E(\mathbb{F}_p)$ the only DLP algorithms we know are generic. For prime fields \mathbb{F}_q we have a subexponential-time algorithm for DLP in \mathbb{F}_q^{\times} , and for suitable prime powers q we have a quasi-polynomial time algorithm. Based on this information, what do you think the current records are for solving DLP in $E(\mathbb{F}_p)$, \mathbb{F}_p^{\times} , \mathbb{F}_q^{\times} ?

- **A.** 64 bits, 192 bits, 4,096 bits
- **B.** 117 bits, 795 bits, 30,750 bits
- C. 161 bits, 2,011 bits, 86,117 bits
- **D.** No idea, "subexponential" and "quasi-polynomial" mean nothing to me.
- **E.** No idea, it really depends on the constant factors.

The Pollard p-1 factorization method

Algorithm

Given an integer N and a smoothness bound B, attempt to factor N as follows:

- **1.** Pick a random integer $a \in [1, N-1]$; if $gcd(a, N) = d \neq 1$ return (d, N/d).
- **2.** Set b=a and for increasing primes $\ell \leq B$:
 - **2.1** Replace b with b^{ℓ^e} where $\ell^{e-1} < N < \ell^e$. If b=1 then give up.
 - **2.2** if $gcd(b-1, N) = d \neq 1$ then return (d, N/d).

Theorem

Let p,q|N be primes. If p-1 is ℓ -smooth but q-1 is not for some prime $\ell \leq B$ then the algorithm succeeds with probability at least $1-1/(\ell+1)$.

Proof. When we reach ℓ in 2.2 we will have $b = a^m \equiv 1 \mod p$, since (p-1)|m. But some prime $\ell' > \ell$ divides q-1 but not m, so $\Pr[b \not\equiv 1 \mod q] \ge 1 - 1/(\ell+1)$.

Robbing a random bank

If $\#(\mathbb{Z}/N\mathbb{Z})^{\times}$ has a B-smooth prime factor then Pollard's algorithm is very likely to succeed, but this is unlikely for any particular N=pq a product of two large primes.

For random pq in [N,2N] we expect the probability is u^{-u} , where $u=\log N/\log B$. That is small, but only subexponentially so; if we try u^u random pq we should succeed.

If we let $u=\sqrt{2\log N/\log\log N}$, then $B=N^{1/u}=L_N[1/2,1/\sqrt{2}]$ and we should expect to factor a random pq in [N,2N] in time $N^{1/u}u^u=L_N[1/2,\sqrt{2}]$.

Key point: By varying pq we vary the group $(\mathbb{Z}/pq\mathbb{Z})^{\times}$. But what if pq is fixed?

Lenstra: We can vary the group by picking a random elliptic curve "modulo pq".

The elliptic curve factorization method (ECM)

Algorithm

Given $N \in \mathbb{Z}$, a smoothness bound B, and a prime bound M, attempt to factor N:

- 1. Pick random $a, x_0, y_0 \in [0, N-1]$ and set $b = y_0^2 x_0^3 ax_0$.
- 2. if $d = \gcd(4a^3 + 27b^2, N) \neq 1$ return (d, N/d) if d < N but give up if d = N.
- **3.** Let $Q = (x_0 : y_0 : 1)$ and for increasing primes $\ell \leq B$:
 - **3.1** Replace Q with $\ell^e Q \bmod N$ where $\ell^{e-1} \leq (\sqrt{M}+1)^2 < \ell^e$. Give up if $Q_z = 0$.
 - **3.2** If $d = \gcd(Q_z, N) \neq 1$ then return (d, N/d).

Theorem

Let P_1 and P_2 be the reductions of $(x_0:y_0:1)$ modulo distinct $p_1,p_2|N$ with $p_1 \leq M$. If $|P_1|$ is ℓ -smooth and $|P_2|$ is not for some $\ell \leq B$ then the algorithm succeeds in 3.2.

Heuristic complexity of ECM

The Hasse interval $[p+1-2\sqrt{p},\ p+1+2\sqrt{p}]$ is too narrow to apply CEP bounds. We can prove $\#E(\mathbb{F}_p)\in[p+1-\sqrt{p},\ p+1+\sqrt{p}]$ with probability at least 1/2, and roughly uniformly distributed over this interval (Sato-Tate on average).

If we heuristically assume integers in $[p+1-\sqrt{p},\ p+1+\sqrt{p}]$ are as likely to be smooth as integers in [p,2p] we can compute the optimal choice of $B=L_M[1/2,1/\sqrt{2}]$. We generally don't know what M should be, so start small and double it. This yields

$$L_p[1/2, \sqrt{2}]\mathsf{M}(\log N),$$

where p is the smallest prime factor of N. We can then use ECM to test whether a given integer N is $L_N[1/2,c]$ -smooth in expected time

$$\begin{split} L_{L_N[1/2,c]} \left[^{1\!/2}, \sqrt{2} \right] &\approx \exp\left(\sqrt{2 \log(\exp(c \sqrt{\log N \log \log N})) \log \log(\exp(c \sqrt{\log N \log \log N}))} \right) \\ &= L_N[1/4, \sqrt{c}]. \end{split}$$

Montgomery curves

Definition

A Montgomery curve is an elliptic curve defined by an equation of the form

$$By^2 = x^3 + Ax^2 + x$$

with $B \neq 0$ and $A \neq \pm 2$. Put v = Bx + AB/3, $w = B^2y$, x = u/B, $y = w/B^2$ to get

$$w^{2} = v^{2} + (B^{2} - A^{2}B^{2}/3)v + (2A^{3}B^{3}/27 - AB^{3}/3),$$

an elliptic curve in Weierstrass form.

To compute $(x_3, y_3) = (x_1, y_1) + (x_2, y_2)$ we use

$$x_3 = Bm^2 - (A + x_1 + x_2),$$
 $y_3 = m(x_1 - x_3) - y_1,$

where $m = (y_2 - y_1)/(x_1 - x_2)$ or $m = (3x_1^2 + 2Ax_1 + 1)/(2By_1)$.

Montgomery ladder

Let $(x_4, y_4) = (x_1, y_1) - (x_2, y_2)$. In projective coordinates we have

$$x_3 = z_4 [(x_1 - z_1)(x_2 + z_2) + (x_1 + z_1)(x_2 - z_2)]^2,$$

 $z_3 = x_4 [(x_1 - z_1)(x_2 + z_2) - (x_1 + z_1)(x_2 - z_2)]^2.$

This allow us to compute $P_1 + P_2$ using 6 multiplications, assuming we know $P_1 - P_2$.

Algorithm (Montgomery Ladder)

Input: A point $P = (x_1 : z_1)$ on a Montgomery curve and a positive integer m.

Output: The point $mP = (x_m : z_m)$.

- 1. Let $m = \sum_{i=0}^k m_i 2^i$ be the binary representation of m.
- 2. Set Q[0] = P and compute Q[1] = 2P (note that P = Q[1] Q[0]).
- **3.** For i = k 1 down to 0: $Q[1 m_i] \leftarrow Q[1] + Q[0], \ Q[m_i] \leftarrow 2Q[0].$
- **4.** Return Q[0].