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Lecture 9 recap: generic DLP bounds

Pohlig-Hellman: O(n logn+ n
√
p), where n = logN , largest prime p|N .

Baby-steps giant-steps: (2 + o(1))
√
N time, (2 + o(1))

√
N space.

Pollard-ρ (Las Vegas): (
√
π/2 + o(1))

√
N expected time, O(logN) space.

Theorem (Shoup)

Let G be cyclic group of prime order N .
• Every deterministic generic algorithm for the discrete logarithm problem in G

uses at least (
√

2 + o(1))
√
N group operations.

• Every Las Vegas generic algorithm for the discrete logarithm problem in G
expects to use at least (

√
2/2 + o(1))

√
N group operations.

Shoup’s lower bounds match the best upper bounds to within a factor of 2.



Index calculus: a non-generic algorithm for the DLP
Let G = 〈α〉 = (Z/pZ)× and identify G with [1, N ] ∩ Z, where N = #G = p− 1.
For e ∈ Z we can use the prime factorization αeβ−1 =

∏
i p
ei
i to obtain a relation

e1 logα p1 + · · ·+ eb logα pb + logα β = e. (1)

which would allow us to compute logα β if we knew the values of logα pi.

Our plan: Pick a smallish set of primes S = {p : p ≤ B} = p1, . . . pb (the factor base),
and generate relations as in (1) by picking random e ∈ [1, N ] and attempting to factor
αeβ−1 over our factor base (e.g. by trial division, or something more clever).

How we win: Collect relations that uniquely determine logα p1, . . . , logα pb, logα β
and use linear algebra over the ring Z/NZ to solve the system for logα β.

When we expect to win: After about π(B) ·N/ψ(N,B) attempts, where ψ(N,B) is
the number of B-smooth integers in [1, N ], those with all prime factors less than B.



Optimizing the smoothness bound B

Theorem (Canfield–Erdős-Pomerance)

As u, x→∞ with u < (1− ε) log x/ log log x we have ψ(x, x1/u) = xu−u+o(u).

With trial division factoring takes O(π(B)M(logN)) time and we expect to need

O(π(B)uuπ(B)M(logN)) ≈ B2uu = N2/uuu

time to get enough relations, where u := logN/ logB so that N1/u = B.

To minimize f(u) := log(N2/uuu) = 2
u logN + u log u we want to choose u so that

f ′(u) = −2u−2 logN + 2(uN)−1 + log u+ 1 = 0.

Ignoring O(1) terms, we want u2 log u ≈ 2 logN , meaning u ≈ 2
√

logN/ log logN .



Expected running time of our index calculus algorithm

Our choice of u ≈ 2
√

logN/ log logN yields the smoothness bound

B = N1/u = exp(u−1 logN) = exp(1/2
√

logN log logN) = LN [1/2, 1/2],

where we have used the standard subexponential asymptotic notation

LN [a, c] := exp((c+ o(1))(logN)a(log logN)1−a),

interpolating LN [0, c] = (logN)c+o(1) (polynomial), LN [1, c] = N c+o(1) (exponential).

Assuming the linear algebra is negligible (it is), the total expected time is

B2uu = LN [1/2, 1/2]2 · LN [1/2, 1] = LN [1/2, 2].

With ECM, smoothness testing becomes negligible and we can achieve LN [1/2,
√

2].
More sophisticated techniques (NFS) heuristically yield LN [1/3, (64/9)1/3].



Current state of the art

For finite fields Fpn ' Fp[x]/(f) the function field sieve uses a factor base of low degree
polynomials in Fp[x] representing elements of Fpn to obtain an LN [1/3, c] bound.

In 2013 Joux found an LN [1/4, c]-time algorithm for F×pn for suitable p and n.

Joux and collaborators improved these techniques rapidly, eventually leading to a DLP
algorithm for F×pn with p = O(n) that runs in time nlogn, which is better than LN [ε, c]
for any ε, c > 0 (quasi-polynomial time).



Instant poll

For E(Fp) the only DLP algorithms we know are generic. For prime fields Fq we have
a subexponential-time algorithm for DLP in F×q , and for suitable prime powers q we
have a quasi-polynomial time algorithm. Based on this information, what do you think
the current records are for solving DLP in E(Fp), F×p , F×q ?

A. 64 bits, 192 bits, 4,096 bits

B. 117 bits, 795 bits, 30,750 bits

C. 161 bits, 2,011 bits, 86,117 bits

D. No idea, “subexponential” and “quasi-polynomial” mean nothing to me.

E. No idea, it really depends on the constant factors.



The Pollard p− 1 factorization method

Algorithm
Given an integer N and a smoothness bound B, attempt to factor N as follows:

1. Pick a random integer a ∈ [1, N − 1]; if gcd(a,N) = d 6= 1 return (d,N/d).
2. Set b = a and for increasing primes ` ≤ B:

2.1 Replace b with b`e where `e−1 < N ≤ `e. If b = 1 then give up.
2.2 if gcd(b− 1, N) = d 6= 1 then return (d,N/d).

Theorem
Let p, q|N be primes. If p− 1 is `-smooth but q − 1 is not for some prime ` ≤ B
then the algorithm succeeds with probability at least 1− 1/(`+1).
Proof. When we reach ` in 2.2 we will have b = am ≡ 1 mod p, since (p− 1)|m.
But some prime `′ > ` divides q − 1 but not m, so Pr[b 6≡ 1 mod q] ≥ 1− 1/(`+1).



Robbing a random bank

If #(Z/NZ)× has a B-smooth prime factor then Pollard’s algorithm is very likely to
succeed, but this is unlikely for any particular N = pq a product of two large primes.

For random pq in [N, 2N ] we expect the probability is u−u, where u = logN/ logB.
That is small, but only subexponentially so; if we try uu random pq we should succeed.

If we let u =
√

2 logN/ log logN , then B = N1/u = LN [1/2, 1/
√

2] and we should
expect to factor a random pq in [N, 2N ] in time N1/uuu = LN [1/2,

√
2].

Key point: By varying pq we vary the group (Z/pqZ)×. But what if pq is fixed?

Lenstra: We can vary the group by picking a random elliptic curve “modulo pq”.



The elliptic curve factorization method (ECM)

Algorithm
Given N ∈ Z, a smoothness bound B, and a prime bound M , attempt to factor N :

1. Pick random a, x0, y0 ∈ [0, N − 1] and set b = y2
0 − x3

0 − ax0.
2. if d = gcd(4a3 + 27b2, N) 6= 1 return (d,N/d) if d < N but give up if d = N .
3. Let Q = (x0 : y0 : 1) and for increasing primes ` ≤ B:

3.1 Replace Q with `eQ mod N where `e−1 ≤ (
√
M + 1)2 < `e. Give up if Qz = 0.

3.2 If d = gcd(Qz, N) 6= 1 then return (d,N/d).

Theorem
Let P1 and P2 be the reductions of (x0 : y0 : 1) modulo distinct p1, p2|N with p1 ≤M .
If |P1| is `-smooth and |P2| is not for some ` ≤ B then the algorithm succeeds in 3.2.



Heuristic complexity of ECM
The Hasse interval [p+ 1− 2√p, p+ 1 + 2√p] is too narrow to apply CEP bounds.
We can prove #E(Fp) ∈ [p+ 1−√p, p+ 1 +√p] with probability at least 1/2, and
roughly uniformly distributed over this interval (Sato-Tate on average).

If we heuristically assume integers in [p+ 1−√p, p+ 1 +√p] are as likely to be
smooth as integers in [p, 2p] we can compute the optimal choice of B = LM [1/2, 1/

√
2].

We generally don’t know what M should be, so start small and double it. This yields

Lp[1/2,
√

2]M(logN),

where p is the smallest prime factor of N . We can then use ECM to test whether a
given integer N is LN [1/2, c]-smooth in expected time

LLN [1/2,c]

[
1/2,
√

2
]
≈ exp

(√
2 log(exp(c

√
logN log logN) log log(exp(c

√
logN log logN)

)
= LN [1/4,

√
c].



Montgomery curves

Definition
A Montgomery curve is an elliptic curve defined by an equation of the form

By2 = x3 +Ax2 + x

with B 6= 0 and A 6= ±2. Put v = Bx+AB/3, w = B2y, x = u/B, y = w/B2 to get

w2 = v2 +
(
B2 −A2B2/3

)
v +

(
2A3B3/27−AB3/3

)
,

an elliptic curve in Weierstrass form.

To compute (x3, y3) = (x1, y1) + (x2, y2) we use

x3 = Bm2 − (A+ x1 + x2), y3 = m(x1 − x3)− y1,

where m = (y2 − y1)/(x1 − x2) or m = (3x2
1 + 2Ax1 + 1)/(2By1).



Montgomery ladder
Let (x4, y4) = (x1, y1)− (x2, y2). In projective coordinates we have

x3 = z4 [(x1 − z1)(x2 + z2) + (x1 + z1)(x2 − z2)]2 ,
z3 = x4 [(x1 − z1)(x2 + z2)− (x1 + z1)(x2 − z2)]2 .

This allow us to compute P1 + P2 using 6 multiplications, assuming we know P1 − P2.

Algorithm (Montgomery Ladder)

Input: A point P = (x1 : z1) on a Montgomery curve and a positive integer m.
Output: The point mP = (xm : zm).

1. Let m =
∑k
i=0mi2i be the binary representation of m.

2. Set Q[0] = P and compute Q[1] = 2P (note that P = Q[1]−Q[0]).
3. For i = k − 1 down to 0: Q[1−mi]← Q[1] +Q[0], Q[mi]← 2Q[0].
4. Return Q[0].


