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23 Divisors and the Weil pairing

In this lecture we address a completely new topic, the Weil pairing, which has many practical
and theoretical applications. In order to define the Weil pairing we first need to expand our
discussion of the function field of a curve from Lecture 4. This requires a few basic results
from commutative algebra and algebraic geometry that we will not take the time to prove;
almost everything we need it is summarized in the first two chapters of Silverman’s book [6],
which I recommend reviewing if you have not seen this material before.

23.1 Valuations on the function field of a curve

Let C/k be a smooth projective curve defined by a homogeneous polynomial fC(x, y, z) = 0
that (as always) we assume is irreducible over k̄.1 For the sake of simplicity we assume
throughout this section that k is a perfect field (every algebraic extension is separable).

In Lecture 4 we defined the function field k(C) as the field of rational functions g/h,
where g, h ∈ k[x, y, z] are homogeneous polynomials of the same degree with h ̸∈ (fC),
modulo the equivalence relation

g1
h1

∼ g2
h2

⇐⇒ g1h2 − g2h1 ∈ (fC).

Alternatively, we can view the function g/h as a rational map (g : h) from C to P1. Our
assumption that C is smooth implies that this rational map is actually a morphism, meaning
that it is defined at every point P ∈ C(k̄); this was stated as Theorem 4.15 and we will
prove it below. This means that even though the rational map (g1 : h1) : C → P1 associated
to particular representative g1/h1 of an element of k(C) might not be defined at at point P
(this occurs when g1(P ) = h1(P ) = 0, since (0 : 0) is not a point in P1), there is always an
equivalent g2/h2 representing the same element of k(C) that is defined at P .

Example 23.1. Consider the function x/z on the elliptic curve E : y2z = x3+Axz2+Bz3.
We can evaluate the map (x : z) at any affine point, but not at the point (0 : 1 : 0), where
we get (0 : 0). But the maps

(x : z) ∼ (x3 : x2z) ∼ (y2z −Axz2 −Bz3 : x2z) ∼ (y2 −Axz −Bz2 : x2)

all represent the same element of k(E), and the last one sends (0 : 1 : 0) to (1 : 0) ∈ P1,
which is defined. Moreover, any other representative of the function x/z that is defined
at (0 : 1 : 0) will give the same value. Notice that the right-most map is also not defined
everywhere, since it gives (0 : 0) at the point (0 :

√
B : 1). The moral is that there typically

will not be a single representative for a function in k(E) that is defined at every point, even
though the function itself is defined everywhere.

Remark 23.2. It is often more convenient to write elements of the function field in affine
form, just as we typically use the equation y2 = x3 + Ax + B to refer to the projective
curve defined by its homogenization; so we may write x instead of x/z, for example. In
general, any time we refer to a function r(x, y) as an element of k(C) that is not a ratio

1Here we are assuming for simplicity that C is a plane curve (e.g. an elliptic curve in Weierstrass form).
One can work more generally in Pn by replacing (f) with a homogeneous ideal I in k[x0, . . . kn] whose zero
locus is a smooth absolutely irreducible projective variety of dimension one in Pn. Everything in this section
applies to any smooth projective (geometrically integral) curve, we use plane curves only for the sake of
concreteness.
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g(x, y, z)/h(x, y, z) of two homogeneous polynomials g and h of the same degree, it should
be understood that we mean the function one obtains by multiplying the numerator and
denominator of r(x, y) by suitable powers of z to put it in the form g/h with g and h
homogeneous polynomials of the same degree.

Definition 23.3. For any point P ∈ C(k̄), we define the local ring at P (or the ring of
regular functions at P ) by

OP := {f ∈ k(C) : f(P ) ̸= ∞} ⊆ k(C),

where ∞ = (1 : 0) ∈ P1. It is a principal ideal domain (PID) with a unique maximal ideal

mP := {f ∈ OP : f(P ) = 0}.

Any generator uP for the principal ideal mP = (uP ) is called a uniformizer at P .

Definition 23.4. A discrete valuation on a field F is a surjective homomorphism v : F× → Z
that satisfies the inequality

v(x+ y) ≥ min(v(x), v(y)).

for all x, y ∈ F×. If v is a discrete valuation on F , then the subring

R := {x ∈ F : v(x) ≥ 0}

is a PID with the unique maximal ideal

m := {x ∈ R : v(x) ≥ 1},

Every nonzero ideal (x) of R is then of the form mn, where n = v(x). Any u ∈ F for which
v(u) = 1 generates m and is called a uniformizer for m.

Given a principal ideal domain R with a unique nonzero maximal ideal m = (u), we can
define a discrete valuation on its fraction field F via

v(x) := min{n ∈ Z : u−nx ∈ R},

and we then have R = {x ∈ F : v(x) ≥ 0}. Note that v(x) does not depend on the choice
of the uniformizer u. We call any such ring R a discrete valuation ring (DVR).

For the curve C/k, the local rings OP are a family of DVRs that all have the same
fraction field k(C). We thus have a discrete valuation vP for each point P ∈ C(k̄) which
we think of as measuring the “order of vanishing” of a function f ∈ k(C) at P (one can
formally expand f as a Laurent series in any uniformizer uP for mP , and the degree of the
first nonzero term will be vP (f), just as with meromorphic functions over C).

Remark 23.5. When k is not algebraically closed the function field k(C) has many val-
uations that are not associated to rational points P ∈ C(k). One can always work with
k̄-points as above (and in [6]), but a more natural approach is to work with closed points:
Gal(k̄/k)-orbits in C(k̄), which we also denote P (we do assume that k is a perfect field so
that k̄/k is separable, otherwise one should replace k̄ with the separable closure of k in k̄).
Each closed point is a finite subset of C(k̄) whose cardinality we denote degP ; this is the
same as the degree of the minimal extension of k over which all the points in P are defined
(which is necessarily a finite Galois extension), and it is also the degree of the residue field
OP /mP as an extension of k. Rational points (elements of C(k)) are closed points of degree
one. Each closed point corresponds to a maximal ideal mP of the coordinate ring k[C]. Note
that it still makes sense to “evaluate” a rational function f ∈ k(C) at a closed point P ; the
result is a closed point f(P ) of P1(k) (because f ∈ k(C) is, by definition, Galois invariant).
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Now that we have valuations vP and uniformizers uP associated to each point P of a
smooth projective curve we can easily prove Theorem 4.15, which was stated without proof.

Theorem 23.6. Let C1/k be a smooth projective curve and let ϕ : C1 → C2 be a rational
map. Then ϕ is a morphism.

Proof. Let ϕ = (ϕ0 : · · · : ϕm), let P ∈ C1(k̄) be any point, let uP be a uniformizer at P ,
and let n = mini vP (ϕi). Then

ϕ = (u−n
P ϕ0 : · · · : u−n

P ϕm)

is defined at P because vP (u
−n
P ϕi) ≥ 0 for all i and vP (u

−n
P ϕi) = 0 for at least one i.

Remark 23.7. When C1 is not smooth one can construct counter-examples to the theorem
above. Smoothness guarantees that the local rings OP are all DVRs, so that we have a
valuation vP to work with. Indeed, a curve is smooth if and only if all its local rings
are DVRs; this gives an alternative criterion for smoothness that does not depend on the
equation of the curve or even the dimension of the projective space in which it is embedded.

Example 23.8. For the function x on the elliptic curve E : y2 = x3 +Ax+B we have

vP (x) =


0 if P = (1 : ∗ : ∗)
1 if P = (0 : ±

√
B : 1) (B ̸= 0)

2 if P = (0 : 0 : 1) (B = 0)

−2 if P = (0 : 1 : 0)

For the function y we have

vP (y) =


0 if P = (∗ : 1 : z0) (z0 ̸= 0)

1 if P = (x0 : 0 : 1) (x30 +Ax0 +B = 0)

−3 if P = (0 : 1 : 0)

You may wonder how we computed these valuations. In particular, how do we know
that v∞(x) = −2 and v∞(y) = −3? There are a couple of ways to see this. One is to use
the fact that for any f ∈ k(C) we always have have

∑
P vP (f) = 0 (see below), so every

function in k(C) has the same number of zeros and poles. Thus if we know all the zeros
(and the order of vanishing at each) and there is only one pole, we know its order.

A more general approach is to consider the degree of the morphism f : C → P1. For
non-constant functions f this is defined as

deg f := [k(C) : f∗(k(P1))]

where f∗ : k(P1) → k(C) is the morphism of function fields that sends g ∈ k(P1) to the
function g ◦f in k(C); for f ∈ k× the convention is to define deg f = 0. In explicit examples
it is often obvious what the degree is, it is the cardinality of the fibers f−1(P ) for all but
finitely many P ∈ P1(k̄). In our example, the function x defines a morphism of degree two
from E to P1, because if we pick an arbitrary point on P1 there will generically be two points
on E that get mapped to it (points with the same x-coordinate). Any time this is not the
case, we have a ramified point, and in the case of a zero or pole the degree of ramification
is what determines its multiplicity.
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Whenever we have f(P ) = Q ∈ P1(k̄) and the size of the preimage f−1(Q) is the same as
the degree of f as a morphism (which happens for all but finitely many Q), no ramification
occurs and if Q = 0 or Q = ∞ then f has a simple zero or pole at P . More generally, we
have the following theorem, which says that so long as we count points with multiplicity,
every fiber of the morphism f : C → P1 has the same size, equal to the degree of f .

Theorem 23.9. Let C be a smooth projective curve over an algebraically closed field k and
let f ∈ k(C)× be an element of its function field (viewed as a morphism f : C → P1). For
every point Q ∈ P1(k) we have

deg f =
∑

f(P )=Q

vP (uQ ◦ f).

where uQ ∈ k(P1) denotes any uniformizer for mQ.

Proof. This is a special case of Proposition 2.6 in [6].

If t is our coordinate for P1 (which we may view as taking values in k ∪ {∞}), then we
can take uQ := t − Q to be a simple translation. Computing vP (uQ ◦ f) then amounts to
re-interpreting the order of “vanishing” at P with the order of “Q-ing” at P .

Corollary 23.10. Let C be a smooth projective curve over an algebraically closed field k.
For every f ∈ k(C)× we have ∑

P∈C(k)

vP (f) = 0,

and vP (f) = 0 for all but finitely many P ; we have vP (f) = 0 for all P if and only if f ∈ k×.

Proof. We have vP (f) ̸= 0 only when f(P ) = 0 or f(P ) = ∞. Applying Theorem 23.9 to
Q = 0 using the uniformizer u0 = t yields

deg f =
∑

f(P )=0

vP (f),

and if we apply it to Q = ∞ with uniformizer u∞ = 1/t we have

deg f =
∑

f(P )=∞

vP (u∞ ◦ f) =
∑

f(P )=∞

−vP (f),

which implies
∑

vP (f) = 0. The cardinalities of f−1(0) and f−1(∞) are each bounded by
deg f , hence finite, so vP (f) ̸= 0 for only finitely many P , and these cardinalities can be
zero if and only if f ∈ k×, since otherwise deg f ≥ 1.

Remark 23.11. When working with closed points over a non-algebraically closed field the
formula in Theorem 23.9 needs to be modified to account for the degrees of the points. We
then have

deg f degQ =
∑

f(P )=Q

vP (uQ ◦ f) degP,

which holds for any closed point Q of P1/k; the formula in Corollary 23.10 becomes∑
vP (f) degP = 0,

where the sum is over closed points P .
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Example 23.12. Another way to compute valuations is to work directly from the defini-
tion using, a uniformizer uP . We did not do this in Example 23.8 because we hadn’t yet
determined uniformizers for the points on an elliptic curve. But from the example it is clear
that we can take

uP =


x− x(P ) if y(P ) ̸= 0 and P ̸= (0 : 1 : 0)

y if y(P ) = 0

x/y if P = (0 : 1 : 0)

Note that vp(x/y) = vp(x)− vp(y) = −2− (−3) = 1. To check that v∞(y) = −3 using the
uniformizer u∞, for example, it suffices to show that 1/y and u3∞ generate the same ideal
in O∞: the function s := y2/x3 = y2/(y2−Ax−B) is a unit in O∞ and we have 1/y = su3∞.

23.2 The divisor class group of a curve

As in the previous section, we continue to assume that C is a smooth projective curve over
a perfect field k.

Definition 23.13. To each point P ∈ C(k̄) we associate a formal symbol [P ]. The divisor
group of C is the free abelian group on the set {[P ] : P ∈ C(k̄)}, denoted DivC. Its elements
are called divisors. Each is a finite sum of the form

D =
∑
P

nP [P ]

in which the nP are integers (so nP = 0 for all but finitely many P ). The integer nP is the
valuation of D at P , also denoted by vP (D) := nP . For each divisor D the finite set

supp(D) := {[P ] : vP (D) ̸= 0}

is its support, and the integer
degD :=

∑
P

vP (D)

is its degree. The degree map D 7→ degD is a surjective homomorphism of abelian groups
whose kernel is the subgroup Div0C of divisors of degree zero. Associated to each function
f ∈ k(C)× there is a divisor

div f :=
∑
P

vP (f)[P ],

which is called a principal divisor. Because each vP : k(C)× → Z is a group homomorphism,
we have divfg = divf + divg, and the map

div : k(C)× → Div C

is a group homomorphism whose image Princ C is a subgroup of Div C, and whose kernel
consists of the nonzero constant functions k×, by Corollary 23.10.

The quotient group
PicC := DivC/PrincC,

is the Picard group of C. Since PrincC lies in the kernel of deg : DivC → Z, we also have
a degree map

deg : PicC → Z
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on divisor classes, and its kernel is the group

Pic0C := Div0C/PrincC

also known as the (degree zero) divisor class group of C. We then have an exact sequence

1 −→ k× −→ k(C)× −→ Div0C −→ Pic0C −→ 0.

Remark 23.14. When k is not algebraically closed one typically define divisors as sums
over closed points P and the degree of a divisor is then degD :=

∑
P vP (D) degP .

Of the various groups defined above, the divisor class group Pic0C is the one of greatest
interest to us, because it is intimately related to the curve C. When C(k) is non-empty
(always true if k = k̄, and can be achieved by extending the field k) it often goes by another
name, the Jacobian of the curve C. Although this is not at all obvious from the definition
above, in addition to is structure as an abelian group, Pic0C can also be given the structure
of an algebraic variety, making it an abelian variety. In general, the construction of the
Jacobian is quite complicated; strictly speaking it is an object separate from Pic0C that
is isomorphic to Pic0C as an abelian group and geometrically characterized by a universal
property that distinguishes it (up to a canonical isomorphism) within the category of abelian
varieties in terms of the Abel-Jacobi map defined below. The details of this construction
do not matter to us, because when C is an elliptic curve we already know exactly what its
Jacobian looks like: it is the curve C together with the distinguished point 0 and the group
law that makes it an abelian variety.

Definition 23.15. Let C/k be a smooth projective curve with a rational point 0 ∈ C(k);
The Abel-Jacobi map is the map C(k) → Pic0C defined by

P 7→ [P ]− [0].

Although we will not prove this here, for a curve C/k of genus g, over an algebraically
closed field the Abel-Jacobi map is surjective if and only if the g ≤ 1 and injective if and
if only if g ≥ 1. As usual, genus g = 1 is the sweet spot, and we will prove in the next
section that for smooth projective curves of genus 1 with a rational point (elliptic curves),
the Abel-Jacobi map is an isomorphism.

23.3 The Jacobian of an elliptic curve

Definition 23.16. Let E/k be an elliptic curve with 0 as its distinguished point (for curves
in Weierstrass form this is the projective point (0 : 1 : 0), the point “at infinity”). For each
pair of points P,Q ∈ E(k) let LP,Q ∈ k(E) denote the function corresponding to the line
PQ, which we define as the tangent to the curve when P = Q. For example, if P = (x1, y1)
and Q = (x2, y2) are distinct affine points then the point-slope formula tells us that

LP,Q = (y − y1)(x2 − x1)− (x− x1)(y2 − y1),

which has zeros at P , Q, and −(P + Q) where it intersects the curve E, but here we are
thinking of LP,Q ∈ k(E) as a map E → P1 that we can evaluate at any point R on E. We
now define

GP,Q :=
LP,Q

LP+Q,−(P+Q)
.
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The motivation for this is that GP,Q effectively encodes our geometric definition of the
group law on E: to add P and Q we construct the line PQ, which intersects the curve E at
a third point −(P +Q), and we then compute P +Q as the point on the line through 0 and
−(P +Q); in the formula for GP,Q above this is the line LP+Q,−(P+Q) in the denominator.

To see this more clearly, let us compute the principal divisors corresponding to the
functions LP,Q and GP,Q. By definition, the function LP,Q has zeros at the points P,Q and
−(P +Q) (possibly with multiplicity if any of these points coincide); it has no other zeros
and no poles at any affine points, so it must have a triple point at the point at infinity. Thus

divLP,Q = [P ] + [Q] + [−(P +Q)]− 3[0]

We can then compute

divGP,Q = [P ] + [Q] + [−(P +Q)]− 3[0]− ([P +Q] + [−(P +Q)] + [0]− 3[0])

= [P ] + [Q]− [P +Q]− [0]

Since divGp,q is a principal divisor, it follows that [P ] + [Q] and [P +Q] + [0] represent the
same equivalence class in PicE; such divisors are said to be linearly equivalent, and we write

[P ] + [Q] ∼ [P +Q] + [0] (1)

to denote this relation.

Theorem 23.17. Let E/k be an elliptic curve the distinguished point 0. The Abel-Jacobi
map E 7→ Pic0E defined by P 7→ [P ]− [0] is a group isomorphism.

Proof. By (1) we have

([P ]− [0]) + ([Q]− [0]) ∼ [P +Q] + [0]− 2[0] = [P +Q]− [0],

and clearly [0]− [0] = 0, so the Abel-Jacobi map is a group homomorphism.
To show surjectivity, let D =

∑
nPP represent a divisor class in Pic0E. By splitting D

into separate sums with nP > 0 and nP < 0, we can write

D =
∑
nP>0

nP [P ]−
∑
nP<0

(−nP )[P ],

and by applying (1) repeatedly we obtain

D ∼

[ ∑
nP>0

nPP

]
−

[ ∑
nP<0

(−nP )P

]
+m[0],

for some integer m (note that the sums
∑

nPP and
∑

(−nP )P inside the brackets are sums
of points in E(k) that yield a single point in E(k) in each case). Since D represents a class
in Pic0E, we have degD = 0, and computing degrees of both sides above yields

0 = 1− 1 +m,

so m = 0. If now let Q =
∑

nP>0 nPP and R =
∑

nP<0(−nP )P be the points in E(k)
obtained by computing the sums

∑
nPP using the group law in E(k), we have

D ∼ [Q]− [R] = [Q]− [0]− ([R]− [0]) = [Q−R]− [0],
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where we have used the fact that the Abel-Jacobi map is a group homomorphism to get the
rightmost equality, which shows that D is in the image of the Abel-Jacobi map, which is
thus surjective.

To show injectivity we need to show that the kernel of the Abel-Jacobi map is trivial,
which amounts to showing that if D =

∑
nP [P ] is a principal divisor, then

∑
nPP = 0.

As above, by applying (1) repeatedly we can obtain D ∼ [Q] − [R]. By adding GR,−Q and
negating, we obtain the principal divisor [T ]− [0], where T = Q−R.

We claim that T = 0, which implies Q = R and therefore
∑

nPP = 0 as desired.
Suppose not. Let t ∈ k(E)× be a function with div t = [T ] − [0] (in fact no such functions
exist, we are supposing that [T ] − [0] is a principal divisor with T ̸= 0 and this is going to
lead to a contradiction). For any f ∈ k(E)× − k×, define

f̃ :=
∏
Q

(t− t(Q))vQ(f)

If f does not have a zero or pole at 0, then f and f̃ have the same divisor and f is a rational
function of t. If f has a zero or pole at 0, we can replace f by ft−v0(f), which does not have
a zero or pole at 0, and we again find that f is a rational function of t. Thus every function
in k(E) is a rational function of t, so k(E) = k(t). But k(t) ≃ k(P1) and P1 has genus 0
while E has genus 1, a contradiction, so S = 0 as claimed.

23.4 The Weil pairing

In this section we define the Weil pairing for torsion points in Pic0C, where C/k is a smooth
projective curve and k is an algebraically closed field. In the next section we will specialize
to elliptic curves and drop our assumption that k is algebraically closed.

Definition 23.18. Let C/k be a smooth projective curve, and let f ∈ k(C)×. For each
divisor D ∈ Div C with support disjoint from divf we define

f(D) :=
∏

P∈supp(D)

f(P )vP (D) ∈ k×,

which satisfies f(D1 +D2) = f(D1)f(D2) for any D1, D2 with support disjoint from divf .

We are now ready to define the Weil pairing. In order to do so it will be convenient to
work with normalized functions. Recall that the kernel of the map div : k(C)× → Div C
consists of the constant functions, so the divisor of a function f ∈ k(C)× determines f only
up to a scalar in k×. In order to pin down this scalar, let us fix a rational point 0 ∈ C(k),
the same point used to define the Abel-Jacobi map, and fix a uniformizer u0 at 0. We may
then associate to each principal divisor D the unique f ∈ k(C)× for which divf = D and

(u
−v0(f)
0 f)(0) = 1.

and call this the normalized function f with divisor divf . The particular choice of the
point 0 and the uniformizer u0, does not matter, all that matters is that we scale all of our
normalized functions consistently. The constant function 1 is normalized, and products and
inverses of normalized functions are normalized, so if we restrict our attention to normalized
functions we get an isomorphism between the multiplicative subgroup of k(C)× consisting
of normalized functions and the group PrincC of principal divisors.
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Definition 23.19. Let n be a positive integer and let k be an algebraically closed field
whose characteristic does not divide n. Let C/k be a smooth projective curve and let
D1, D2 be divisors with disjoint support representing n-torsion elements of Pic0C (this means
D1, D2 ∈ Div0C and nD1, nD2 ∈ PrincC). Let f1, f2 ∈ k(C)× be the unique normalized
functions for which nD1 = divf1 and nD2 = div f2. We then define

en(D1, D2) :=
f1(D2)

f2(D1)
∈ k×.

For each integer n, the map (D1, D2) 7→ en(D1, D2) is called the Weil pairing.

The Weil pairing actually defines a map

en : (Pic
0C)[n]× (Pic0C)[n] → µn,

where µn denotes the group of nth roots of unity in k× (which we continue to assume is
algebraically closed). In order to prove this, we need the Weil reciprocity law.

Theorem 23.20. Let C/k be a smooth projective curve and let f, g ∈ k(C)× be functions
whose divisors have disjoint support. Then

f(divg) = g(divf).

Proof. See [6, Ex. 2.11].

Lemma 23.21. The value of the Weil pairing en(D1, D2) ∈ k× depends only on the divisor
classes of D1 and D2 and is an element of µn ⊆ k×.

Proof. Let g ∈ k(C)× be any normalized function for which div g, D1, D2 all have disjoint
support, and let f1 and f2 be the normalized functions with divf1 = nD1 and divf2 = nD2.
Then f1g

n is the normalized function for n(D1 + divg), and we have

en(D1 + divg,D2) =
f1(D2)g

n(D2)

f2(D1 + divg)
=

f1(D2)g
n(D2)

f2(D1)f2(divg))

=
f1(D2)g

n(D2)

f2(D1)g(divf2)
=

f1(D2)g
n(D2)

f2(D1)g(nD2)

=
f1(D2)g

n(D2)

f2(D1)gn(D2)
=

f1(D2)

f2(D1)
= en(D1, D2).

If the supports of divg and D2 are disjoint, we similarly have en(D1, D2+divg) = en(D1, D2);
thus en(D1, D2) depends only on the divisor classes of D1 and D2. We also have

en(D1, D2)
n =

f1(D2)
n

f2(D1)n
=

f1(nD2)

f2(nD1)
=

f1(divf2)

f2(divf1)
= 1,

so en(D1, D2) ∈ µn as claimed.

Theorem 23.22. Let n be a positive integer, let k be an algebraically closed field whose
characteristic does not divide n, and let C/k be a smooth projective curve. Let D1, D2, D3

denote divisors with disjoint support that represent n-torsion elements of Pic0C. The Weil
pairing en : (Pic

0C)[n]× (Pic0C)[n] → µn satisfies:

• Bilinear: en(D1 +D2, D3) = en(D1, D3)en(D2, D3);
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• Alternating: en(D1, D2) = en(D2, D1)
−1.

Note that the two properties together imply that en is bilinear in both variables.

Proof. For i = 1, 2, 3 let fi be the normalized function with divfi = nDi. We then have

en(D1 +D2, D3) =
f1(D3)f2(D3)

f3(D1)f3(D2)
= en(D1, D3)en(D2, D3),

and
en(D1, D2)en(D2, D1) =

f1(D2)

f2(D1)

f2(D1)

f1(D2)
= 1,

so the alternating property holds.

The Weil pairing has many other important properties that hold in general, but to
simplify their presentation (and proofs), we now specialize to the case of elliptic curves.

23.5 The Weil pairing on an elliptic curve

For an elliptic curve E/k, the isomorphism E
∼−→ Pic0E given by the Abel-Jacobi map

P 7→ [P ]− [0] allows us to view the Weil pairing as a map

en : E[n]× E[n] → µn

defined on pairs of n-torsion points of E/k (for n prime to the characteristic of k). At first
glance it might appear that we have a problem, since for P,Q ∈ E[n] the divisors [P ]− [0]
and [Q]− [0] do not have disjoint support, which we assumed in our definition of en.

But note that we can always use (1) to translate these divisors them to linearly equivalent
divisors with disjoint support by picking some point T ̸= 0, Q,−P,Q − P and replacing
[P ]− [0] with the linearly equivalent divisor [P + T ]− [T ]; this does not change the element
of Pic0E represented by [P ] − [0] nor does it change the value of the Weil pairing, by
Lemma 23.21.

For practical applications we want to be able to compute en(P,Q) explicitly, and in a
computationally efficient manner. For this purpose we use the following sequence of functions
proposed by Miller [4].

Definition 23.23. Let E/k be an elliptic curve and let P ∈ E(k). For each integer n we
recursively define the function fn,P via

f0,P = f1,P := 1, fn+1,P := fn,PGP,nP , f−n,P := (fn,PGnP,−nP )
−1,

where GP,Q is as in Definition 23.16.

We assume that the line functions LP,Q are all normalized (they will still be defined by
an equation for the line PQ); this implies that the functions GP,Q are also normalized, as
are the functions fn,P .

Lemma 23.24. The functions fn,P satisfy the following properties:

(i) divfn,P = n[P ]− (n− 1)[0]− [nP ];

(ii) fm+n,P = fm,P fn,PGmP,nP ;

(iii) fmn,P = fn
m,P fn,mP = fm

n,P fm,nP .
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Proof. For (i) we proceed by induction on n ≥ 0. For n = 0, 1 we have

divf0,P = 0 = 0[P ]− (0− 1)[0]− [0P ] and div f1,P = 0 = 1[P ]− (1− 1)[0]− [1P ],

and for n > 1 the inductive hypothesis yields

divfn+1 = divfn,P + divGP,nP

= n[P ]− (n− 1)[0]− [nP ] + [P ] + [nP ]− [P + nP ]− [0]

= (n+ 1)[P ]− (n+ 1− 1)[0]− [(n+ 1)P ].

We then note that

divf−n,P = −divfn,P −GnP,−nP

= −n[P ] + (n− 1)[0] + [nP ]− [nP ]− [−nP ] + [nP − nP ] + [0]

= −n[P ]− (−n− 1)[0]− [−nP ].

which establishes (i) for all n ∈ Z.
For (ii) we use (i) to compute

divfm,P fn,PGmP,nP = (m+ n)[P ]− (m+ n− 2)[0]− [mP ]− [nP ]

+ [mP ] + [nP ]− [mP + nP ]− [0]

= (m+ n)[P ]− (m+ n− 1)[0]− [(m+ n)P ]

= divfm+n,P ,

and since these are all normalized functions, (ii) follows.
For (iii) we use (i) to compute

divfn
m,P fn,mP = n(m[P ]− (m− 1)[0]− [mP ]) + n[mP ]− (n− 1)[0]− [mnP ]

= nm[P ]− (nm− 1)[0]− [mnP ]

= divfmn,P .

which establishes the first equality in (iii), since these are normalized functions. The second
equality is proved similarly.

The key part of Lemma 23.24 is (ii), which allows us to efficiently compute fn,P using
a double-and-add approach, or any generic exponentiation algorithm, in O(log n) steps.
Lemma 23.24 allows us to reduce the computation of fn,P (Q) to computations of GaP,bP (Q),
for various integers a and b. Computing GaP,bP (Q) involves evaluating the line functions
LaP,bP and LaP+bP,−(aP+bP ) at Q. Assuming we know the coordinates of the points aP and
bP (which we will have computed in previous steps of an addition chain), this involves a
single application of the group law on E to compute the coordinates of the pointaP + bP
which we can then negate to compute −(aP + bP ) (for curves in short Weierstrass form,
this means negating the y-coordinate), followed by O(1) operations in k to evaluate the line
functions at Q. Each group operation in E(k) involves just O(1) field operations, and we
thus obtain the following corollary,

Corollary 23.25. Let E/k be an elliptic curve and let n be a positive integer. For any
P,Q ∈ E(k) we can evaluate fn,P (Q) using O(log n) field operations in k.
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The following lemma allows us to use the Miller functions to compute the Weil pairing.

Lemma 23.26. Let E/k be an elliptic curve, let n be a positive integer not divisible by the
characteristic of k, and let P,Q ∈ E(k)[n]. For any point T ̸∈ {0, Q,−P,Q − P} on E we
have

en(P,Q) =
fn,Q(T )fn,P (Q− T ))

fn,P (−T )fn,Q(P + T )
.

Proof. We have divGP,T = [P ]+[T ]− [P +T ]− [0], so the divisors [P ]− [0] and [P +T ]− [T ]
are linearly equivalent, and the hypotheses ensure that the divisors [P+T ]− [T ] and [Q]− [0]
have disjoint support. Let f1 be the normalized function with divf1 = n[P − T ] − n[−T ]
and let f2 be the normalized function with divf2 = n[Q] − n[0]. Let τ ∈ k(E)× denote
the translation morphism E → E defined by R 7→ R − T (so plug −T into the formula for
point addition on E, treating the coordinates of the other point as variables, to obtain the
coordinate functions of τ ; note that τ is a morphism of smooth projective curves but not
an isogeny of elliptic curves because it maps 0 to −T ). Composing fn,P with τ yields a
map E → P1 corresponding to an element of k(E)× that we then normalize. Composition
with τ shifts all the zeros and poles of fn,P by −T , which means that each point in the
corresponding divisor gets shifted by −T . Using part (i) of Lemma 23.24 we compute

div(fn,P ◦ τ) = n[P − T ]− (n− 1)[−T ]− [nP − T ] = n[P − T ]− n[−T ] = divf1,

since nP = 0, and fn,P ◦ τ is normalized, so f1 = fn,P ◦ τ . We also have

divfn,Q = n[Q]− (n− 1)[0]− [nQ] = n([Q]− [0]) = divf2,

since nQ = 0, and fn,Q is normalized, so fn,Q = f2. Thus by definition

en(P,Q) =
(fn,P ◦ τ)([Q]− [0])

fn,Q([P + T ]− [T ])
=

fn,P (Q− T )/fn,P (−T )

fn,Q(P + T )/fn,Q(T )
=

fn,Q(T )fn,P (Q− T ))

fn,P (−T )fn,Q(P + T )
.

Corollary 23.27. Let E/k be an elliptic curve with distinct points P,Q ∈ E(k)[n], where
n > 1 is prime to the characteristic of k. Then

en(P,Q) = (−1)n
fn,P (Q)

fn,Q(P )
.

Proof. See [4, Prop. 8].

Warning 23.28. The factor (−1)n is sometimes inadvertently omitted from this formula
in the literature ([3, p. 387], for example).

Note that the definition of fn,P does not require k to be algebraically closed, we just
need to work over a field where P is defined, in which case all the points in the support
of divfn,P will be closed points of degree 1 and everything we have done over algebraically
closed fields still applies. In particular, the lemma and the corollary imply that if P and Q
are k-rational n-torsion points, then en(P,Q) is also k-rational.

When working with elliptic curves E/k with k not algebraically closed, for any integer n
not divisible by the characteristic of k, we define en(P,Q) for arbitrary P,Q ∈ E[n] by
simply working with the base-change of E to the field k(E[n]), the minimal field over which
the n-torsion points of E are all defined (which is necessarily a Galois extension of k).

The following theorem gives a more complete list of the properties of the Weil pairing
than given in Theorem 23.22.
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Theorem 23.29. Let E/k be an elliptic curve and let m and n be positive integers prime
to the characteristic of k. The Weil pairing en : E[n] × E[n] → µn satisfies the following
properties.

• Bilinear: en(P +Q,R) = en(P,R)en(Q,R) and en(P,Q+R) = en(P,Q)en(P,R);

• Alternating: en(P, P ) = 1 and en(P,Q) = en(Q,P )−1;

• Non-degenerate: If P ̸= 0 then en(P,Q) ̸= 1 for some Q ∈ E[n];

• Compatibility: emn(P,Q) = en(mP,Q) for all P ∈ E[mn] and Q ∈ E[n];

• Galois-equivariant: en(P
σ, Qσ) = en(P,Q)σ for all σ ∈ Gal(k̄/k);

• Endomorphisms: en(α(P ), α(Q)) = en(P,Q)degα for all α ∈ End(E);

• Surjective: for each P ∈ E[n] we have {en(P,Q) : Q ∈ E[n]} = µr, where r := |P |.

Proof. We already proved the bilinearity and alternating properties in Theorem 23.22. For
non-degeneracy and compatibility, see [4, Prop. 7], or [6, Prop. III.8.1]. Galois equivariance
follows immediately from the explicit formula for en(P,Q) given by Corollary 23.27: the
formulas for fn,P and fn,Q are algebraic expressions that depend only on the coefficients of
E, which are fixed by σ, and the points P and Q, so fn,Pσ(Qσ) = fn,P (Q)σ and similarly,
fn,Qσ(P σ) = fn,Q(P )σ. See [7, Thm. 11.7] for a proof of the endomorphism compatibility.

Surjectivity follows from non-degeneracy. Fix any P ∈ E[n]. Bilinearity implies that
{en(P,Q) : Q ∈ E[n]} is a subgroup µm of µn. For all Q ∈ E[n] we have

1 = en(P,Q)m = en(mP,Q),

so by non-degeneracy, mP = 0 and m is a multiple of |P |. On the other hand, if en(P,Q)
has order m greater than e = |P | for any Q, then en(eP,Q) = en(0, Q) ̸= 1, which is a
contradiction, because en(0, Q) = en(0, Q)en(Q,Q) = en(Q + 0, Q) = en(Q,Q) = 1, by the
alternating property.

Corollary 23.30. Let E/k be an elliptic curve and let n be a positive integer prime to the
characteristic of k. If E[n] ⊆ E(k) then µn ⊆ k×. In particular, if k = Q then E[n] ⊆ E(k)
can occur only for n ≤ 2, and if k = Fq then E[n] ⊆ E(k) can occur only if q ≡ 1 mod n.

Corollary 23.31. Let E/k be an elliptic curve and let P ∈ E(k̄) be a point of order n prime
to the characteristic of k. For every Q ∈ E[n] the order of en(P,Q) in µn is the largest m|n
for which E[m] ⊆ ⟨P,Q⟩, equivalently, the least m|n for which mQ ∈ ⟨P ⟩. In particular,
en(P,Q) = 1 if and only if ⟨P,Q⟩ is cyclic.

Proof. Let us first suppose m = n, in which case ⟨P,Q⟩ = E[n]. By the surjectivity of
en : E[n]× E[n] → µn, we have en(P, aP + bQ) = ζn for some a, b ∈ Z, and

ζn = en(P, aP + bQ) = en(P, P )aen(P,Q)b = en(P,Q)b

(by the bilinear and alternating properties of en), so en(P,Q) generates µn = ⟨ζn⟩ ≃ Z/nZ
and must have order n.

In the general case we have mQ = aP with 0 ≤ a < n. The order of aP = mQ is at
most r := n/m, so a is divisible by m, and if we put c = −a/m then ⟨rP,Q+ cP ⟩ = E[m].
By the case we have already proved, em(rP,Q+ cP ) has order m, and therefore

en(P,Q) = en(P,Q)en(P, P )c = en(P,Q+ cP ) = emr(P,Q+ cP ) = em(rP,Q+ cP )

also has order m (the last equality follows from compatibility).
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23.6 Applications of the Weil pairing

There are many applications of the Weil pairing, two of which you will have the opportunity
to explore on Problem Set 13. These include an efficient algorithm to compute the structure
of the group E(Fq), which was the original motivation of Miller’s work in [4], and a method
for transferring the discrete logarithm problem on an elliptic curve E/Fq to the multiplicative
group of an extension of Fq containing µn, where n is the cardinality of the subgroup of E(Fq)
in which one wishes to compute a discrete logarithm. In most cases the minimal extension
of Fq containing µn will be impractically large, but when this is not the case it may be easier
to solve the discrete logarithm problem in this extension of Fq rather than in E(Fq). The
degree of this minimal extension is known as the embedding degree, which we discuss in the
next section. For cryptographic applications that depend on the difficulty of the discrete
logarithm problem, it is important that the embedding degree is not too small. On the
other hand, if the embedding degree is not too large, one can then use pairings to efficiently
implement cryptographic protocols that would otherwise be impractical.

This brings us to the notion of pairing-based cryptography, a topic that we unfortunately
do not have time to address in any detail. But we will give one example to demonstrate its
utility: a one round tripartite Diffie-Hellman key exchange, due to Joux [3]. For the sake
of presentation we will describe it in terms of the Weil pairing, but in practice one uses the
more efficient Tate pairing defined in §23.8 below.

We assume that Alice, Bob, and Carol all know an elliptic curve E/Fq and two in-
dependent n-torsion points P and Q in E[n]. They want to agree on a random secret,
and they would like to do this with a single round of messaging that does not require any
back-and-forth communication.

To begin the protocol, Alice, Bob, and Carol individually generate random integers a, b,
and c, respectively. Alice then sends PA := aP and QA := aQ to Bob and Carol, Bob sends
PB := bP and QB := bQ to Alice and Carol, and Carol sends PC := cP and QC := cQ to
Alice and Bob.

Alice then computes

en(PB, QC)
a = en(bP, cQ)a = en(P,Q)bca,

Bob computes
en(PA, QC)

b = en(aP, cQ)b = en(P,Q)acb,

and Carol computes
en(PA, QB)

c = en(aP, bQ)c = en(P,Q)abc.

The common value en(P,Q)abc ∈ µn is now known to Alice, Bob, and Carol. If one assumes
that the discrete logarithm problem is hard, an eavesdropper cannot readily determine the
values of a, b, or c, and if one further assumes that the computational Diffie-Hellman problem
is hard, an eavesdropper cannot readily determine µn either. The computational Diffie-
Hellman problem is to compute abP , given P , aP , and bP ; this can clearly be solved
efficiently if one can compute discrete logarithms efficiently, but the converse is not known.

23.7 Embedding degree

For practical applications one typically applies Miller’s algorithm to n-torsion points of an
elliptic curve E/Fq, where Fq is a finite field and n is a prime dividing #E(Fq). While we
typically will not have E[n] ⊆ E(Fq) (indeed, E(Fq) will often be cyclic), we can always
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choose an n that divides #E(Fq), in which case we at least have a cyclic subgroup of E[n] or
order n that lies in E(Fq) (assuming n is prime). The remaining points in E[n] will then lie
in a finite extension of Fq; as indicated in the previous section, the degree of this extension
is a key parameter.

Definition 23.32. Let E/K be an elliptic curve over a field K and let n be a positive
integer. The embedding degree of E with respect to n is the degree of the minimal extension
L/K for which E[n] ⊆ E(L).

An easy lower bound on the embedding degree k arises from the fact that the Weil pairing
E[n] × E[n] → µn is surjective. If E[n] ⊆ Fqk then we must have µn ⊆ F×

qk
. The group

F×
qk

is cyclic, so this is the same as requiring n to divide qk − 1, equivalently, qk ≡ 1 mod n.
When E(Fq) contains a cyclic group of order n, this necessary condition is also sufficient.

Lemma 23.33. Let E/Fq be an elliptic curve, let n ⊥ q be a prime divisor of #E(Fq), and
let πn denote the restriction of the Frobenius endomorphism πE to End(E[n]) ≃ GL2(Z/nZ).
Then either E[n] ⊆ E(Fq) or E[n] ≃ ker(πn − 1) ⊕ ker(πn − q), and the embedding degree
of E with respect to n is the least integer k > 0 such that qk ≡ 1 mod n.

Proof. Let t = trπE , so that #E(Fq) = q+1−t. Then t ≡ q+1 mod n and the characteristic
polynomial of πE satisfies x2 − tx+ q ≡ x2 − (q+1)x+ q ≡ (x− 1)(x− q) mod n. It follows
that (πn − 1)(πn − q) = 0 in End(E[n]). If q ≡ 1 mod n then πE acts trivially on E[n] and
E[n] ⊆ E(Fq); otherwise πn ∈ End(E[n]) ≃ GL2(Z/nZ) can be diagonalized and E[n] can
be decomposed as the sum of the distinct eigenspaces ker(πn − 1) and ker(πn − q) of πn.

As observed above, the embedding degree e necessarily satisfies qe ≡ 1 mod n, since
µn ⊆ F×

qe , so e ≥ k. On the other hand, for P ∈ ker(πn − 1) we have P ∈ E(Fq) ⊆ E(Fqk),
and for P ∈ ker(πn − q) we have πk

n(P ) = qk(P ) = P , in which case P is fixed by πk
E and

lies in E(Fqk). It follows that E[n] ⊆ E(Fqk) and therefore e ≤ k, so e = k as claimed.

Lemma 23.33 gives us an easy way to compute the embedding degree k when n|#E(Fq).
If we suppose E is chosen arbitrarily, we should expect q to be roughly equidistributed
modulo n, and for must values of n this means it is likely that q is a primitive root modulo n,
in which case we must have k = n− 1 (assuming n is prime). This is bad news for practical
applications: if k = n− 1 it will take log2(#Fqk) = (n− 1) log2 q ≈ n log n bits just to write
down a typical n-torsion point, which is hopeless if n is of cryptographic size (say n ≈ 2256),
since this will be more bits than there are atoms in the universe.

Practical applications of the Weil pairing are feasible only when k is small. It is possible
to have k as small as 1 or 2 when E is supersingular (see Problem Set 12), but this is
too small for cryptographic applications, as you will demonstrate on Problem Set 12, since
one can transfer the discrete logarithm problem in E(Fq) to the discrete logarithm problem
in F×

qk
. Ideally one wants k to be around 10 or 20 to balance the difficulty of the discrete

logarithm problems in E(Fq) and F×
qk

; for q ≈ 2256 using k = 12 yields #F×
qk

≈ 23072, in
which case the discrete logarithm problems have similar difficulty.

Elliptic curves with embedding degrees in this range are known as pairing friendly curves.
They are quite rare, far too rare to find by brute force search, but they can be constructed
using the CM method. See [2] for an extensive survey of methods to compute suitable
parameters q, n, k, D, where q and n are cryptographic size primes, k is small, qk ≡ 1 mod n,
and D is an imaginary quadratic discriminant with |D| small enough so that the CM method
can be used to construct an elliptic curve E/Fq so that n divides #E(Fq).
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23.8 Tate pairing

In most practical applications of pairings, rather than using the Weil pairing one instead
uses the Tate pairing, or variations thereof, which can be computed much more efficiently.

Definition 23.34. Let n > 2 be an integer and let E/Fq be an elliptic curve over a finite
field with embedding degree k with respect to n. The (modified) Tate pairing is the map
tn : E[n]× E[n] → µn defined by

tn(P,Q) :=

(
fn,P (Q+ T )

fn,P (T )

)(qk−1)/n

where T ∈ E[n]− {0, P,−Q,P −Q}.

The exponentiation by (qk − 1)/n included in our definition of the Tate pairing means
that if P ∈ E[n] we can actually compute tn(P,Q) using any Q ∈ E(Fqk); the value of of
tn(P,Q) depends only on the image of Q ∈ E(Fqk) under the quotient map

E(Fqk) → E(Fqk)/nE(Fqk) ≃ E[n],

and we can view Q ∈ E(Fqk) as representing a coset of nE(Fqk) corresponding to an element
of E[n] (the Tate pairing is sometimes defined with this interpretation in mind).

Like the Weil pairing, the Tate pairing is a non-degenerate bilinear pairing that is sur-
jective and Galois-equivariant. Unlike the Weil pairing, the Tate pairing is not alternating,
and may have tn(P, P ) ̸= 1; this is an advantage in many practical applications, because it
means that the pairing may be non-trivial even when we restrict to points in a cyclic sub-
group of E[n], which is never true of the Weil pairing. Another advantage is that we only
need to compute one Miller function fn,P , rather than the two Miller functions fn,P and fn,Q
required by the Weil pairing, and in the typical case where n is a prime dividing #E(Fq),
we can choose P ∈ E(Fq) to be rational, which greatly accelerates this computation.

In the practically interesting scenario where n ⊥ q is a prime dividing #E(Fq) and k > 1,
Lemma 23.33 gives us a natural decomposition of E[n] ≃ ker(πn − 1)⊕ ker(πn − q) into two
cyclic subgroups of order n, the first of which is just E(Fq)[n]. In many applications (and in
many descriptions of the Tate pairing in the literature), one restricts the inputs of the Tate
pairing to P ∈ ker(πn − 1) = E(Fq)[n] and Q ∈ ker(πn − q) ⊆ E(Fqk).
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