Below is the sequence of topics planned for the course. Each corresponds to roughly a week of lectures (three hours), but some will be slightly less.

1. **Introduction**
 elliptic curves, the group law, Weierstrass and Edwards equations.

2. **Efficient computation**
 integer arithmetic, finite field arithmetic, root-finding, polynomial factorization.

3. **Isogenies and endomorphisms**
 the Frobenius endomorphism, division polynomials, Hasse’s theorem.

4. **Elliptic curves over \(\mathbb{F}_q \)**
 point counting, baby-steps giant-steps, Schoof’s algorithm.

5. **The discrete logarithm problem**
 ECEDH, Pollard rho, Pohlig-Hellman, generic lower bounds, index calculus.

6. **Integer factorization and primality proving**
 Lenstra ECM, Goldwasser-Killian ECPP, Montgomery curves.

7. **Endomorphism rings**
 the dual isogeny, quadratic orders, quaternion algebras, supersingular curves.

8. **Elliptic curves over \(\mathbb{C} \)**
 elliptic functions, Eisenstein series, the Weierstrass \(\wp \)-function,
 complex tori, the \(j \)-function, the uniformization theorem, isogenies.

9. **Modular curves**
 congruence subgroups, Riemann surfaces, modular functions.

10. **The theory of complex multiplication**
 ring class fields, Hilbert class polynomials, the CM method.

11. **Isogeny graphs**
 isogeny volcanoes, supersingular isogeny graphs, isogeny-based cryptography.

12. **Divisors and pairings**
 divisor class groups, pairings, Miller’s algorithm, pairing-based cryptography.

13. **Elliptic curves over \(\mathbb{Q} \)**
 Mordell’s theorem, 2-descent, Weil-Châtelet, Selmer, and Shafarevich–Tate groups.

14. **L-functions**
 Modular forms, modularity, the Birch and Swinnerton-Dyer conjecture.