18.783 Elliptic Curves Lecture 7

Andrew Sutherland

February 22, 2022

Hasse's theorem

Definition (from Lecture 6)

If α is an isogeny, the dual isogeny $\hat{\alpha}$ is the unique isogeny for which $\hat{\alpha} \circ \alpha = \deg \alpha$. The trace of $\alpha \in \operatorname{End}(E)$ is $\operatorname{tr} \alpha := \alpha + \hat{\alpha} = \deg \alpha + 1 - \deg(\alpha - 1) \in \mathbb{Z}$.

Hasse's theorem

Definition (from Lecture 6)

If α is an isogeny, the dual isogeny $\hat{\alpha}$ is the unique isogeny for which $\hat{\alpha} \circ \alpha = \deg \alpha$. The trace of $\alpha \in \operatorname{End}(E)$ is $\operatorname{tr} \alpha := \alpha + \hat{\alpha} = \deg \alpha + 1 - \deg(\alpha - 1) \in \mathbb{Z}$.

Lemma

 $\alpha, \beta \colon E_1 \to E_2$ isogenies with α inseperable, $\alpha + \beta$ is inseparable if and only if β is.

Theorem (Hasse, 1933)

Let E/\mathbb{F}_q be an elliptic curve over a finite field. Then $\#E(\mathbb{F}_q) = q+1-\operatorname{tr} \pi_E$, where the trace of the Frobenius endomorphism π_E satisfies $|\operatorname{tr} \pi_E| \leq 2\sqrt{q}$.

Hasse's theorem

Definition (from Lecture 6)

If α is an isogeny, the dual isogeny $\hat{\alpha}$ is the unique isogeny for which $\hat{\alpha} \circ \alpha = \deg \alpha$. The trace of $\alpha \in \operatorname{End}(E)$ is $\operatorname{tr} \alpha := \alpha + \hat{\alpha} = \deg \alpha + 1 - \deg(\alpha - 1) \in \mathbb{Z}$.

Lemma

 $\alpha, \beta \colon E_1 \to E_2$ isogenies with α inseperable, $\alpha + \beta$ is inseparable if and only if β is.

Theorem (Hasse, 1933)

Let E/\mathbb{F}_q be an elliptic curve over a finite field. Then $\#E(\mathbb{F}_q) = q + 1 - \operatorname{tr} \pi_E$, where the trace of the Frobenius endomorphism π_E satisfies $|\operatorname{tr} \pi_E| \leq 2\sqrt{q}$.

Definition

The Hasse interval $\mathcal{H}(q)$ is $[q+1-2\sqrt{q}, \ q+1+2\sqrt{q}] = [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$

The Legendre symbol

Definition

For odd primes p the Legendre symbol is defined by

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \left\{ \begin{array}{ll} 1 & \text{ if } y^2 = a \text{ has two solutions mod } p \\ 0 & \text{ if } y^2 = a \text{ has one solution mod } p \\ -1 & \text{ if } y^2 = a \text{ has no solutions mod } p \end{array} \right\} = \#\{\alpha \in \mathbb{F}_p : \alpha^2 = a\} - 1.$$

We also define $\left(\frac{a}{\mathbb{F}_q}\right)$ for $a\in\mathbb{F}_q$ with q odd; just replace \mathbb{F}_p with \mathbb{F}_q .

The Legendre symbol

Definition

For odd primes p the Legendre symbol is defined by

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 1 & \text{ if } y^2 = a \text{ has two solutions mod } p \\ 0 & \text{ if } y^2 = a \text{ has one solution mod } p \\ -1 & \text{ if } y^2 = a \text{ has no solutions mod } p \end{array} \right\} = \#\{\alpha \in \mathbb{F}_p : \alpha^2 = a\} - 1.$$

We also define $\left(\frac{a}{\mathbb{F}_q}\right)$ for $a \in \mathbb{F}_q$ with q odd; just replace \mathbb{F}_p with \mathbb{F}_q .

For $E \colon y^2 = x^3 + Ax + B$ over \mathbb{F}_q we have

$$#E(\mathbb{F}_q) = 1 + \sum_{x \in \mathbb{F}_q} \left(1 + \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right) \right) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right).$$

Naive point counting

Let $E\colon y^2=x^3+Ax+B$ be an elliptic curve over $\mathbb{F}_q.$ Computing $\#E(\mathbb{F}_q)$ via

$$#E(\mathbb{F}_q) = 1 + \#\{(x,y) \in \mathbb{F}_q^2 : y^2 = x^3 + Ax + B\}$$

takes $O(q^2 \mathsf{M}(\log q))$ time, which in terms of $n = \log q$ is $O(\exp(2n)\mathsf{M}(n))$. But

$$#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

can be computed in $O(\exp(n)\mathsf{M}(n))$ time by precomputing a table of squares in \mathbb{F}_q .

Naive point counting

Let $E\colon y^2=x^3+Ax+B$ be an elliptic curve over \mathbb{F}_q . Computing $\#E(\mathbb{F}_q)$ via

$$#E(\mathbb{F}_q) = 1 + \#\{(x,y) \in \mathbb{F}_q^2 : y^2 = x^3 + Ax + B\}$$

takes $O(q^2 M(\log q))$ time, which in terms of $n = \log q$ is $O(\exp(2n)M(n))$. But

$$#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

can be computed in $O(\exp(n)\mathsf{M}(n))$ time by precomputing a table of squares in \mathbb{F}_q .

But $\#E(\mathbb{F}_p)$ lies in the Hasse interval $\mathcal{H}(q)$ of width $4\sqrt{q}$. Surely we can do better!

Computing the order of a point

The order |P| of any $P \in E(\mathbb{F}_q)$ divides $\#E(\mathbb{F}_q) \in \mathcal{H}(q) = [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$. If we put $M_0 = \lceil (\sqrt{q}-1)^2 \rceil$, we can find a multiple M of |P| in $\mathcal{H}(q)$ by computing

$$M_0P$$
, $(M_0+1)P$, $(M_0+2)P$, ..., $MP=0$.

We have $M \leq M_0 + 4\sqrt{q}$, so this takes $O(\sqrt{q}\mathsf{M}(\log q)) = O(\exp(n/2)\mathsf{M}(n))$ time.

Computing the order of a point

The order |P| of any $P \in E(\mathbb{F}_q)$ divides $\#E(\mathbb{F}_q) \in \mathcal{H}(q) = [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$. If we put $M_0 = \lceil (\sqrt{q}-1)^2 \rceil$, we can find a multiple M of |P| in $\mathcal{H}(q)$ by computing

$$M_0P$$
, $(M_0+1)P$, $(M_0+2)P$, ..., $MP=0$.

We have $M \leq M_0 + 4\sqrt{q}$, so this takes $O(\sqrt{q}\mathsf{M}(\log q)) = O(\exp(n/2)\mathsf{M}(n))$ time.

Algorithm (Fast order computation)

Given $P \in E(\mathbb{F}_q)$ and $M \in \mathcal{H}(q)$ such that MP = 0, compute |P| as follows:

- 1. Compute $M = p_1^{e_1} \cdots p_r^{e_r}$ and set m := M.
- 2. For each prime p_i , while $p_i|m$ and $(m/p_i)P=0$, replace m by m/p_i .
- **3.** Output |P| = m.

Computing the order of a point

The order |P| of any $P \in E(\mathbb{F}_q)$ divides $\#E(\mathbb{F}_q) \in \mathcal{H}(q) = [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$. If we put $M_0 = \lceil (\sqrt{q}-1)^2 \rceil$, we can find a multiple M of |P| in $\mathcal{H}(q)$ by computing

$$M_0P$$
, $(M_0+1)P$, $(M_0+2)P$, ..., $MP=0$.

We have $M \leq M_0 + 4\sqrt{q}$, so this takes $O(\sqrt{q}\mathsf{M}(\log q)) = O(\exp(n/2)\mathsf{M}(n))$ time.

Algorithm (Fast order computation)

Given $P \in E(\mathbb{F}_q)$ and $M \in \mathcal{H}(q)$ such that MP = 0, compute |P| as follows:

- 1. Compute $M = p_1^{e_1} \cdots p_r^{e_r}$ and set m := M.
- **2.** For each prime p_i , while $p_i|m$ and $(m/p_i)P=0$, replace m by m/p_i .
- **3.** Output |P| = m.

This algorithm takes much less than $O(\exp(n/2)\mathsf{M}(n))$ time. (in fact $O(\exp(n/5)n^{16/5})$ deterministically and $\exp(n^{1/2+o(1)})$ probabilistically).

The exponent of a group

Definition

The exponent of a finite group G is $\lambda(G) := \operatorname{lcm}\{|g| : g \in G\}.$

The exponent of a group

Definition

The exponent of a finite group G is $\lambda(G) := \operatorname{lcm}\{|g| : g \in G\}.$

Lemma

Let G be a finite abelian group. Then $\exists g \in G$ such that $|g| = \lambda(G)$.

Proof: Put $G \simeq \mathbb{Z}/n_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_r\mathbb{Z}$ with $n_i|n_{i+1}$ and take any generator of $\mathbb{Z}/n_r\mathbb{Z}$.

The exponent of a group

Definition

The exponent of a finite group G is $\lambda(G) := \operatorname{lcm}\{|g| : g \in G\}$.

Lemma

Let G be a finite abelian group. Then $\exists g \in G$ such that $|g| = \lambda(G)$.

Proof: Put $G \simeq \mathbb{Z}/n_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_r\mathbb{Z}$ with $n_i|n_{i+1}$ and take any generator of $\mathbb{Z}/n_r\mathbb{Z}$.

Theorem

Let G be a finite abelian group. If g and h are uniformly distributed elements of G then

$$\Pr[\operatorname{lcm}(|g|,|h|) = \lambda(G)] > \frac{6}{\pi^2}.$$

Proof: $\Pr[\operatorname{lcm}(|g|,|h|) = \lambda(G)] \ge \prod_{p|\lambda(G)} (1-p^{-2}) > \prod_p (1-p^{-2}) = \zeta(2)^{-1} = 6/\pi^2$.

Counting points on quadratic twists

Let $E \colon y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{F}_q and pick $s \in \mathbb{F}_q$ so $\left(\frac{s}{\mathbb{F}_q}\right) = -1$.

Then \widetilde{E} : $sy^2 = x^3 + Ax + B$ is a (non-isomorphic) quadratic twist of E, and we have

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

$$\#\tilde{E}(\mathbb{F}_q) = q + 1 - \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

$$\#E(\mathbb{F}_q) + \#\tilde{E}(\mathbb{F}_q) = 2q + 2.$$

To compute $\#E(\mathbb{F}_q)$ it suffices to compute either $\#E(\mathbb{F}_q)$ or $\#\widetilde{E}(\mathbb{F}_q)$.

We can put \widetilde{E} in Weierstrass form as \widetilde{E} : $y^2 = x^3 + s^2 Ax + s^3 B$.

Mestre's theorem/algorithm

Theorem (Mestre)

Let p>229 be prime, E/\mathbb{F}_p an elliptic curve with quadratic twist $\widetilde{E}/\mathbb{F}_p$. At least one of $\lambda(E(\mathbb{F}_p))$ and $\lambda(\widetilde{E}(\mathbb{F}_p))$ has a unique multiple in $\mathcal{H}(p)$.

Mestre's theorem/algorithm

Theorem (Mestre)

Let p > 229 be prime, E/\mathbb{F}_p an elliptic curve with quadratic twist $\widetilde{E}/\mathbb{F}_p$. At least one of $\lambda(E(\mathbb{F}_p))$ and $\lambda(\widetilde{E}(\mathbb{F}_p))$ has a unique multiple in $\mathcal{H}(p)$.

Algorithm (Mestre)

Given E/\mathbb{F}_p with p>229 compute $E(\mathbb{F}_p)$ as follows:

- **1.** Compute \tilde{E} , and set $E_0 := E$, $E_1 := \tilde{E}$, $N_0 := 1$, $N_1 := 1$, i := 0.
- **2.** While neither N_0, N_1 has a unique multiple U_0, U_1 in $\mathcal{H}(p)$:
 - a. Pick a random $P \in E_i(\mathbb{F}_p)$ and compute $M \in \mathcal{H}(p)$ such that MP = 0.
 - **b.** Use M to compute |P|, then replace N_i with $lcm(N_i, |P|)$ and replace i by 1-i.
- 3. Output $\#E(\mathbb{F}_p)=U_0$ or $\#E(\mathbb{F}_p)=2p+2-U_1$ (whichever is defined).

Mestre's theorem/algorithm

Theorem (Mestre)

Let p > 229 be prime, E/\mathbb{F}_p an elliptic curve with quadratic twist $\widetilde{E}/\mathbb{F}_p$. At least one of $\lambda(E(\mathbb{F}_p))$ and $\lambda(\widetilde{E}(\mathbb{F}_p))$ has a unique multiple in $\mathcal{H}(p)$.

Algorithm (Mestre)

Given E/\mathbb{F}_p with p>229 compute $E(\mathbb{F}_p)$ as follows:

- **1.** Compute \widetilde{E} , and set $E_0 := E$, $E_1 := \widetilde{E}$, $N_0 := 1$, $N_1 := 1$, i := 0.
- **2.** While neither N_0, N_1 has a unique multiple U_0, U_1 in $\mathcal{H}(p)$:
 - a. Pick a random $P \in E_i(\mathbb{F}_p)$ and compute $M \in \mathcal{H}(p)$ such that MP = 0.
 - **b.** Use M to compute |P|, then replace N_i with $lcm(N_i, |P|)$ and replace i by 1-i.
- 3. Output $\#E(\mathbb{F}_p)=U_0$ or $\#E(\mathbb{F}_p)=2p+2-U_1$ (whichever is defined).

We expect O(1) iterations in Step 2, expected running time is $O(\exp(n/2)M(n))$.

Baby-steps giant-steps

Algorithm (Shanks)

Given $P \in E(\mathbb{F}_q)$ compute $M \in \mathcal{H}(q)$ such that MP = 0 as follows:

- **1.** Pick $r, s \in \mathbb{Z}_{>0}$ such that $rs \geq 4\sqrt{q}$ and put $a := \lceil (\sqrt{q} 1)^2 \rceil = \min(\mathcal{H}(q) \cap \mathbb{Z})$.
- **2.** Compute baby steps $S_{\text{baby}} := \{0, P, 2P, ..., (r-1)P\}.$
- 3. Compute giant steps $S_{\mathrm{giant}}:=\{aP,\;(a+r)P,\;(a+2r)P,\;\dots,\;(a+(s-1)r)P\}.$
- **4.** For each $P_{\text{giant}} = (a + ir)P$ check if $P_{\text{giant}} + P_{\text{baby}} = 0$ for some $P_{\text{baby}} = jP$. If so, output M = a + ri + j.

Baby-steps giant-steps

Algorithm (Shanks)

Given $P \in E(\mathbb{F}_q)$ compute $M \in \mathcal{H}(q)$ such that MP = 0 as follows:

- 1. Pick $r, s \in \mathbb{Z}_{>0}$ such that $rs \geq 4\sqrt{q}$ and put $a := \lceil (\sqrt{q} 1)^2 \rceil = \min(\mathcal{H}(q) \cap \mathbb{Z})$.
- **2.** Compute baby steps $S_{\text{baby}} := \{0, P, 2P, ..., (r-1)P\}.$
- **3.** Compute giant steps $S_{\text{giant}} := \{aP, (a+r)P, (a+2r)P, \dots, (a+(s-1)r)P\}.$
- **4.** For each $P_{\text{giant}} = (a + ir)P$ check if $P_{\text{giant}} + P_{\text{baby}} = 0$ for some $P_{\text{baby}} = jP$. If so, output M = a + ri + j.

Every $M \in \mathcal{H}(q)$ can be written as M = a + ir + j with $0 \le i < s$ and $0 \le j < r$, and

$$MP = (a + ri)P + jP = P_{giant} + P_{baby} = 0,$$

for some $P_{\text{giant}} \in S_{\text{giant}}$ and $P_{\text{baby}} \in S_{\text{baby}}$. Complexity is $O(\exp(n/4)M(n))$.

Batching inversions

In order to efficiently match giant steps with baby steps we use affine coordinates. Addition in $E(\mathbb{F}_q)$ uses $3\mathbf{M} + \mathbf{I}$ or $4\mathbf{M} + \mathbf{I}$ operations in \mathbb{F}_q , or $O(\mathsf{M}(n)\log n)$ time.

Batching inversions

In order to efficiently match giant steps with baby steps we use affine coordinates. Addition in $E(\mathbb{F}_q)$ uses $3\mathbf{M} + \mathbf{I}$ or $4\mathbf{M} + \mathbf{I}$ operations in \mathbb{F}_q , or $O(\mathsf{M}(n)\log n)$ time.

Algorithm

Given $\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q$ compute $\alpha_1^{-1}, \cdots \alpha_m^{-1}$ as follows:

- 1. Set $\beta_0 := 1$ and compute $\beta_i := \beta_{i-1}\alpha_i$ for i from 1 to m.
- **2.** Compute $\gamma_m := \beta_m^{-1}$.
- **3.** For i from m down to 1 compute $\alpha_i^{-1} := \beta_{i-1}\gamma_i$ and $\gamma_{i-1} := \gamma_i\alpha_i$.

Batching inversions

In order to efficiently match giant steps with baby steps we use affine coordinates. Addition in $E(\mathbb{F}_q)$ uses $3\mathbf{M} + \mathbf{I}$ or $4\mathbf{M} + \mathbf{I}$ operations in \mathbb{F}_q , or $O(\mathsf{M}(n)\log n)$ time.

Algorithm

Given $\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q$ compute $\alpha_1^{-1}, \cdots \alpha_m^{-1}$ as follows:

- **1.** Set $\beta_0 := 1$ and compute $\beta_i := \beta_{i-1}\alpha_i$ for i from 1 to m.
- **2.** Compute $\gamma_m := \beta_m^{-1}$.
- **3.** For i from m down to 1 compute $\alpha_i^{-1} := \beta_{i-1}\gamma_i$ and $\gamma_{i-1} := \gamma_i\alpha_i$.

This takes less than $3m\mathbf{M} + \mathbf{I}$ operations in \mathbb{F}_q , or $O(m\mathbf{M}(n) + \mathbf{M}(n)\log n)$ time. For $m \geq \log n$ this is $O(\mathbf{M}(n))$ per inversion, on average, rather than $O(\mathbf{M}(n)\log n)$.

For large m the cost of each baby/giant step is effectively $6\mathbf{M}$ operations in \mathbb{F}_q .

Point counting summary

The table below summarizes the complexity of various algorithms to compute $\#E(\mathbb{F}_q)$. Complexity bounds are bit-complexities in terms of $n = \log q$.

time complexity	space complexity
$O(\exp(2n)M(n))$	O(n)
$O(\exp(n)M(n)\log n)$	O(n)
$O(\exp(n)M(n))$	$O(\exp(n)n)$
$O(\exp(n/2)M(n))$	O(n)
$O(\exp(n/4)M(n))$	$O(\exp(n/4)n)$
$O(\operatorname{poly}(n))$	$O(\operatorname{poly}(n))$
	$O(\exp(2n)M(n))$ $O(\exp(n)M(n)\log n)$ $O(\exp(n)M(n))$ $O(\exp(n/2)M(n))$ $O(\exp(n/4)M(n))$

For Mestre's algorithm these are expected running times, the rest are deterministic. Probabilistic optimizations to Schoof's algorithm (SEA) are used in practice for large q.