18.783 Elliptic Curves Lecture 6

Andrew Sutherland

February 16, 2022

Lecture 5 recap

- Isogeny decomposition (in characteristic p > 0): $\alpha = \alpha_{sep} \circ \pi^n$ for some $n \ge 0$.
- The separable degree is $\deg_s \alpha := \deg \alpha_{\text{sep}}$, the inseparable degree is $\deg_i \alpha := p^n$.
- $\# \ker \varphi = \# E[\alpha] := \{ P \in E(\bar{k}) : \alpha(P) = 0 \} = \deg_s \alpha.$
- $\alpha = \beta \circ \gamma \Rightarrow \deg \alpha = \deg \beta \deg \gamma$ and $\deg_* \alpha = \deg_* \beta \deg_* \gamma$ for * = s, i.
- Every finite $G \leq E[\bar{k}]$ is the kernel of a separable isogeny that is unique up to isomorphism and can be explicitly constructed using Vélu's formulas.
- For $E \colon y^2 = x^3 + Ax + B$ the multiplication-by-n map can be written in the form

$$[n](x,y) = \left(\frac{\phi_n(x)}{\psi_n^2(x)}, \frac{\omega_n(x,y)}{\psi_n^3(x,y)}\right),$$

where $\phi_n, \omega_n, \psi_n \in \mathbb{Z}[x, y, A, B]$ are given by explicit recurrence relations.

• $deg[n] = n^2$ and [n] is separable if and only if $n \perp p$.

The n-torsion subgroup of an elliptic curve

Theorem (Lecture 5)

The multiplication-by-n map [n] has degree n^2 that is separable if and only if $n \perp p$.

The n-torsion subgroup of an elliptic curve

Theorem (Lecture 5)

The multiplication-by-n map [n] has degree n^2 that is separable if and only if $n\perp p$.

Theorem

Let E/k be an elliptic curve over a field of characteristic p. For each prime ℓ we have

$$E[\ell^e] \simeq egin{cases} \mathbb{Z}/\ell^e\mathbb{Z} \oplus \mathbb{Z}/\ell^e\mathbb{Z} & ext{if } \ell
eq p, \ \mathbb{Z}/\ell^e\mathbb{Z} & ext{or } \{0\} & ext{if } \ell = p. \end{cases}$$

When $E[\ell] \simeq \{0\}$ we say that E is supersingular, otherwise E is ordinary.

The n-torsion subgroup of an elliptic curve

Theorem (Lecture 5)

The multiplication-by-n map [n] has degree n^2 that is separable if and only if $n \perp p$.

Theorem

Let E/k be an elliptic curve over a field of characteristic p. For each prime ℓ we have

$$E[\ell^e] \simeq egin{cases} \mathbb{Z}/\ell^e\mathbb{Z} \oplus \mathbb{Z}/\ell^e\mathbb{Z} & ext{if } \ell
eq p, \ \mathbb{Z}/\ell^e\mathbb{Z} & ext{or } \{0\} & ext{if } \ell = p. \end{cases}$$

When $E[\ell] \simeq \{0\}$ we say that E is supersingular, otherwise E is ordinary.

Corollary

Every finite subgroup of E(k) can be written as the sum of two (possibly trivial) cyclic groups with at most one of order divisible by p.

Let E_1/k and E_2/k be elliptic curves.

Definition

 $\operatorname{Hom}(E_1, E_2)$ is the abelian group of morphisms $\alpha \colon E_1 \to E_2$ under pointwise addition. Note that $\alpha \in \operatorname{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Let E_1/k and E_2/k be elliptic curves.

Definition

 $\operatorname{Hom}(E_1,E_2)$ is the abelian group of morphisms $\alpha\colon E_1\to E_2$ under pointwise addition.

Note that $\alpha \in \operatorname{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Lemma

Let $\alpha, \beta \in \text{Hom}(E_1, E_2)$. If $\alpha(P) = \beta(P)$ for all $P \in E_1(\bar{k})$ then $\alpha = \beta$.

Let E_1/k and E_2/k be elliptic curves.

Definition

 $\operatorname{Hom}(E_1,E_2)$ is the abelian group of morphisms $\alpha\colon E_1\to E_2$ under pointwise addition.

Note that $\alpha \in \operatorname{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Lemma

Let $\alpha, \beta \in \text{Hom}(E_1, E_2)$. If $\alpha(P) = \beta(P)$ for all $P \in E_1(\bar{k})$ then $\alpha = \beta$.

Proof: $\ker(\alpha - \beta) = E_1(\bar{k})$ is infinite so $\alpha - \beta = 0$.

Let E_1/k and E_2/k be elliptic curves.

Definition

 $\operatorname{Hom}(E_1,E_2)$ is the abelian group of morphisms $\alpha\colon E_1\to E_2$ under pointwise addition.

Note that $\alpha \in \operatorname{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Lemma

Let $\alpha, \beta \in \text{Hom}(E_1, E_2)$. If $\alpha(P) = \beta(P)$ for all $P \in E_1(\bar{k})$ then $\alpha = \beta$.

Proof: $\ker(\alpha - \beta) = E_1(\bar{k})$ is infinite so $\alpha - \beta = 0$.

Lemma

For all $n \in \mathbb{Z}$ and $\alpha \in \operatorname{Hom}(E_1, E_2)$ we have $[n] \circ \alpha = n\alpha = \alpha \circ [n]$.

Let E_1/k and E_2/k be elliptic curves.

Definition

 $\operatorname{Hom}(E_1,E_2)$ is the abelian group of morphisms $\alpha\colon E_1\to E_2$ under pointwise addition.

Note that $\alpha \in \operatorname{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Lemma

Let $\alpha, \beta \in \text{Hom}(E_1, E_2)$. If $\alpha(P) = \beta(P)$ for all $P \in E_1(\bar{k})$ then $\alpha = \beta$.

Proof: $\ker(\alpha - \beta) = E_1(\bar{k})$ is infinite so $\alpha - \beta = 0$.

Lemma

For all $n \in \mathbb{Z}$ and $\alpha \in \text{Hom}(E_1, E_2)$ we have $[n] \circ \alpha = n\alpha = \alpha \circ [n]$.

Proof: We have $([-1] \circ \alpha)(P) = -\alpha(P) = \alpha(-P) = (\alpha \circ [-1])(P)$ and $([n] \circ \alpha)(P) = n\alpha(P) = \alpha(P) + \dots + \alpha(P) = \alpha(P + \dots + P) = \alpha(nP) = (\alpha \circ [n])(P)$.

The cancellation law for isogenies

For $\delta \in \text{Hom}(E_0, E_1)$, $\alpha, \beta \in \text{Hom}(E_1, E_2)$ and $\gamma \in \text{Hom}(E_2, E_3)$ we have

$$(\alpha+\beta)\circ\delta=\alpha\circ\delta+\beta\circ\delta\qquad\text{ and }\qquad\gamma\circ(\alpha+\beta)=\gamma\circ\alpha+\gamma\circ\beta$$

since these identities hold pointwise.

Lemma

Let $\delta \colon E_0 \to E_1$, $\alpha, \beta \colon E_1 \to E_2$, and $\gamma \colon E_2 \to E_3$ be isogenies. Then

$$\gamma \circ \alpha = \gamma \circ \beta \quad \Longrightarrow \quad \alpha = \beta,
\alpha \circ \delta = \beta \circ \delta \quad \Longrightarrow \quad \alpha = \beta.$$

The cancellation law for isogenies

For $\delta \in \text{Hom}(E_0, E_1)$, $\alpha, \beta \in \text{Hom}(E_1, E_2)$ and $\gamma \in \text{Hom}(E_2, E_3)$ we have

$$(\alpha + \beta) \circ \delta = \alpha \circ \delta + \beta \circ \delta$$
 and $\gamma \circ (\alpha + \beta) = \gamma \circ \alpha + \gamma \circ \beta$

since these identities hold pointwise.

Lemma

Let $\delta \colon E_0 \to E_1$, $\alpha, \beta \colon E_1 \to E_2$, and $\gamma \colon E_2 \to E_3$ be isogenies. Then

$$\gamma \circ \alpha = \gamma \circ \beta \implies \alpha = \beta,$$
 $\alpha \circ \delta = \beta \circ \delta \implies \alpha = \beta.$

Proof: Isogenies are surjective, so $\alpha, \beta, \gamma, \delta$ and their compositions not zero maps.

Then $\gamma \circ \alpha = \gamma \circ \beta \Rightarrow \gamma \circ \alpha - \gamma \circ \beta = 0 \Rightarrow \gamma \circ (\alpha - \beta) = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$ and $\alpha \circ \delta = \beta \circ \delta \Rightarrow \alpha \circ \delta - \beta \circ \delta = 0 \Rightarrow (\alpha - \beta) \circ \delta = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$.

The dual isogeny

Definition

Let $\alpha \colon E_1 \to E_2$ be an isogeny of elliptic curves of degree n. The dual isogeny is the unique isogeny $\hat{\alpha}$ for which $\hat{\alpha} \circ \alpha = [n]$. We also define $[\hat{0}] := 0$.

Uniqueness follows from the cancellation law. Existence is nontrivial (see notes).

Lemma

- (1) If $\hat{\alpha} \circ \alpha = [n]$ then $\alpha \circ \hat{\alpha} = [n]$, that is, $\hat{\hat{\alpha}} = \alpha$, and for $n \in \mathbb{Z}$ we have $[\hat{n}] = [n]$.
- (2) For any $\alpha, \beta \in \text{Hom}(E_1, E_2)$ we have $\widehat{\alpha + \beta} = \widehat{\alpha} + \widehat{\beta}$.
- (3) For any $\alpha \in \text{Hom}(E_2, E_3)$ and $\beta \in \text{Hom}(E_1, E_2)$ we have $\widehat{\alpha \circ \beta} = \widehat{\beta} \circ \widehat{\alpha}$.

The dual isogeny

Definition

Let $\alpha \colon E_1 \to E_2$ be an isogeny of elliptic curves of degree n. The dual isogeny is the unique isogeny $\hat{\alpha}$ for which $\hat{\alpha} \circ \alpha = [n]$. We also define $[\hat{0}] := 0$.

Uniqueness follows from the cancellation law. Existence is nontrivial (see notes).

Lemma

- (1) If $\hat{\alpha} \circ \alpha = [n]$ then $\alpha \circ \hat{\alpha} = [n]$, that is, $\hat{\hat{\alpha}} = \alpha$, and for $n \in \mathbb{Z}$ we have $[\hat{n}] = [n]$.
- (2) For any $\alpha, \beta \in \text{Hom}(E_1, E_2)$ we have $\widehat{\alpha + \beta} = \widehat{\alpha} + \widehat{\beta}$.
- (3) For any $\alpha \in \operatorname{Hom}(E_2, E_3)$ and $\beta \in \operatorname{Hom}(E_1, E_2)$ we have $\widehat{\alpha \circ \beta} = \widehat{\beta} \circ \widehat{\alpha}$.
- $\text{Proof: } (1) \ (\alpha \circ \hat{\alpha}) \circ \alpha = \alpha \circ (\hat{\alpha} \circ \alpha) = \alpha \circ [n] = [n] \circ \alpha \text{, and } [n] \circ [n] = [n^2] = [\deg[n]].$
- (2) Deferred to Lecture 23.
- $(3) (\hat{\beta} \circ \hat{\alpha}) \circ (\alpha \circ \beta) = \hat{\beta} \circ [\deg \alpha] \circ \beta = [\deg \alpha] \circ \hat{\beta} \circ \beta = [\deg \alpha] \circ [\deg \beta] = [\deg(\alpha \circ \beta)].$

The endomorphism ring of an elliptic curve

Definition

 $\operatorname{End}(E)$ is the ring with additive group is $\operatorname{Hom}(E,E)$ and multiplication $\alpha\beta:=\alpha\circ\beta.$

The additive identity is 0 := [0] and the multiplicative identity is 1 := [1].

The distributive laws are verified pointwise.

Note that $\alpha\beta \neq 0$ whenever $\alpha, \beta \neq 0$ (by surjectivity), so $\operatorname{End}(E)$ has no zero divisors.

Lemma

The map $n \mapsto [n]$ defines an injective ring homomorphism $\mathbb{Z} \mapsto \operatorname{End}(E)$ that agrees with scalar multiplication.

The endomorphism ring of an elliptic curve

Definition

 $\operatorname{End}(E)$ is the ring with additive group is $\operatorname{Hom}(E,E)$ and multiplication $\alpha\beta:=\alpha\circ\beta.$

The additive identity is 0 := [0] and the multiplicative identity is 1 := [1].

The distributive laws are verified pointwise.

Note that $\alpha\beta \neq 0$ whenever $\alpha, \beta \neq 0$ (by surjectivity), so $\operatorname{End}(E)$ has no zero divisors.

Lemma

The map $n \mapsto [n]$ defines an injective ring homomorphism $\mathbb{Z} \mapsto \operatorname{End}(E)$ that agrees with scalar multiplication.

Proof: [m+n]=[m]+[n], $[mn]=[m]\circ[n]$, and $m\neq 0\Rightarrow [m]\neq 0$ (finite kernel), and we note that $([n]\alpha)(P)=[n](\alpha(P))=n\alpha(P)=(n\alpha)(P)$ for all $P\in E(\bar{k})$.

In $\operatorname{End}(E)$ we are thus free to replace [n] with n (so $\alpha+n$ means $\alpha+[n]$, for example).

The trace of an an endomorphism

Lemma

For any $\alpha \in \operatorname{End}(E)$ we have $\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha)$.

The trace of an an endomorphism

Lemma

For any $\alpha \in \operatorname{End}(E)$ we have $\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha)$.

Proof: $deg(1-\alpha) = \widehat{(1-\alpha)}(1-\alpha) = (1-\hat{\alpha})(1-\alpha) = 1 - (\alpha+\hat{\alpha}) + deg(\alpha)$.

Definition

The trace of $\alpha \in \operatorname{End}(E)$ is the integer $\operatorname{tr} \alpha = \alpha + \hat{\alpha}$.

Theorem

For all $\alpha \in \operatorname{End}(E)$ both α and $\hat{\alpha}$ are solutions to $x^2 - (\operatorname{tr} \alpha)x + \operatorname{deg} \alpha = 0$ in $\operatorname{End}(E)$.

The trace of an an endomorphism

Lemma

For any $\alpha \in \operatorname{End}(E)$ we have $\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha)$.

Proof: $deg(1-\alpha) = \widehat{(1-\alpha)}(1-\alpha) = (1-\hat{\alpha})(1-\alpha) = 1 - (\alpha+\hat{\alpha}) + deg(\alpha)$.

Definition

The trace of $\alpha \in \operatorname{End}(E)$ is the integer $\operatorname{tr} \alpha = \alpha + \hat{\alpha}$.

Theorem

For all $\alpha \in \operatorname{End}(E)$ both α and $\hat{\alpha}$ are solutions to $x^2 - (\operatorname{tr} \alpha)x + \operatorname{deg} \alpha = 0$ in $\operatorname{End}(E)$.

Proof: $\alpha^2 - (\operatorname{tr} \alpha)\alpha + \operatorname{deg} \alpha = \alpha^2 - (\alpha + \hat{\alpha})\alpha + \hat{\alpha}\alpha = 0$ and similarly for $\hat{\alpha}$.

Restricting endomorphisms to $\boldsymbol{E}[\boldsymbol{n}]$

Definition

For any $\alpha \in \operatorname{End}(E)$ its restriction to E[n] is denoted $\alpha_n \in \operatorname{End}(E[n])$.

Let $n \geq 1$ be coprime to the characteristic and let $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} = \langle P_1, P_2 \rangle$. Then we can view α_n as the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where

$$\alpha(P_1) = aP_1 + bP_2$$

$$\alpha(P_2) = cP_1 + dP_2$$

The determinant and trace of this matrix do not depend on our choice of P_1 and P_2 .

Theorem

Let $\alpha \in \operatorname{End}(E)$ and let $n \geq 1$ be coprime to the characteristic. Then

$$\operatorname{tr} \alpha \equiv \operatorname{tr} \alpha_n \bmod n$$
 and $\operatorname{deg} \alpha \equiv \operatorname{det} \alpha_n \bmod n$.