18.783 Elliptic Curves Lecture 21

Andrew Sutherland

April 25, 2022

The first main theorem of complex multiplication

Let \mathcal{O} be an imaginary quadratic order with discriminant D, and let

 $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}) := \{ j(E) \in \mathbb{C} : \operatorname{End}(E) = \mathcal{O} \}.$

In the previous lecture we proved that the Hilbert class polynomial

$$H_D(X) := H_{\mathcal{O}}(X) := \prod_{j(E) \in \text{Ell}_{\mathcal{O}}(\mathbb{C})} \left(X - j(E) \right)$$

has integer coefficients. We defined L to be the splitting field of $H_D(X)$ over $K := \mathbb{Q}(\sqrt{D})$, and showed that there is an injective group homomorphism

 $\Psi \colon \operatorname{Gal}(L/K) \hookrightarrow \operatorname{cl}(\mathcal{O})$

that commutes with the group actions of $\operatorname{Gal}(L/K)$ and $\operatorname{cl}(\mathcal{O})$ on the roots of $H_D(X)$. It remains to show that Ψ is surjective, equivalently, that $H_D(X)$ is irreducible over K.

The decomposition group

Let L/K be a Galois extension of number fields, and let \mathfrak{p} be a prime ideal of $\mathcal{O}_K := K \cap \overline{\mathbb{Z}}$ (a "prime" of K). The \mathcal{O}_L -ideal $\mathfrak{p}\mathcal{O}_L$ has a unique factorization

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_n^{e_n}$$

into primes \mathfrak{q}_i of L for which $\mathfrak{q}_i \cap \mathcal{O}_K = \mathfrak{p}$. If $\mathfrak{p}\mathcal{O}_L$ is squarefree ($\mathfrak{p} \nmid \operatorname{disc} \mathcal{O}_K$) then \mathfrak{p} is unramified in L, and $\operatorname{Gal}(L/K)$ acts transitively on $\{\mathfrak{q}|\mathfrak{p}\} := \{q_1, \ldots, q_n\}$.

Definition

Let L/K be a Galois extension of number fields, let \mathfrak{p} be a prime of K that is unramified in L. For each prime $\mathfrak{q} \in {\mathfrak{q}|\mathfrak{p}}$ the stabilizer subgroup

$$D_{\mathfrak{q}} := \{ \sigma \in \operatorname{Gal}(L/K) : \mathfrak{q}^{\sigma} = \mathfrak{q} \}$$

is the decomposition group of q.

Frobenius elements

Let $\mathbb{F}_{\mathfrak{p}} := \mathcal{O}_K/\mathfrak{p}$ and $\mathbb{F}_{\mathfrak{q}} := \mathcal{O}_L/\mathfrak{q}$ be the residue fields of the maximal ideals \mathfrak{p} and \mathfrak{q} (the rings \mathcal{O}_K and \mathcal{O}_L are Dedekind domains, so nonzero prime ideals are maximal). These are finite fields of cardinality $N\mathfrak{p} := [\mathcal{O}_K : \mathfrak{p}]$ and $N\mathfrak{q} := [\mathcal{O}_L : \mathfrak{q}]$. The image of \mathcal{O}_K in $\mathcal{O}_L/\mathfrak{q}$ is $\mathcal{O}_K/(\mathfrak{q} \cap \mathcal{O}_K) = \mathcal{O}_K/\mathfrak{p} = \mathbb{F}_{\mathfrak{p}}$, so $\mathbb{F}_{\mathfrak{p}}$ is a subfield of $\mathbb{F}_{\mathfrak{q}}$.

Each $\sigma \in D_{\mathfrak{q}}$ fixes \mathfrak{q} and induces an automorphism $\overline{\sigma} \in \operatorname{Gal}(\mathbb{F}_{\mathfrak{q}}/\mathbb{F}_{\mathfrak{p}})$ via $\overline{\sigma}(x) := \overline{\sigma(x)}$. When \mathfrak{p} is unramified this defines a group isomorphism

$$D_{\mathfrak{q}} \xrightarrow{\sim} \operatorname{Gal}(\mathbb{F}_{\mathfrak{q}}/\mathbb{F}_{\mathfrak{p}})$$

Definition

Let L/K be a Galois extension of number fields and \mathfrak{q} a prime of L with $\mathfrak{p} := \mathfrak{q} \cap \mathcal{O}_K$ unramified. The unique $\sigma_{\mathfrak{q}} \in D_{\mathfrak{q}}$ for which $\bar{\sigma}_{\mathfrak{q}}$ is the Frobenius automorphism $x \mapsto x^{\mathrm{N}\mathfrak{p}}$ is the Frobenius element at \mathfrak{q} . The Frobenius elements of $\mathfrak{q}|\mathfrak{p}$ are all conjugate, and we use $\sigma_{\mathfrak{p}}$ to denote this conjugacy class; $\sigma_{\mathfrak{p}}$ is a single element when $\mathrm{Gal}(L/K)$ is abelian.

Primes of good reduction

If E/\mathbb{C} has CM by an imaginary quadratic order \mathcal{O} of discriminant $D := \operatorname{disc} \mathcal{O}$, then j(E) is a root of $H_D(X)$ in the splitting field L of $H_D(X)$ over $K := \mathbb{Q}(\sqrt{D})$, and we can choose a Weierstrass model $y^2 = x^3 + Ax + B$ for E with $A, B \in \mathcal{O}_L$ (take A = 3j(E)(1728 - j(E)) and $B = 2j(E)(1728 - j(E))^2$, for example).

For primes q of L that do not divide $\Delta(E) := -16(4A^3 + 27B^2)$ we can reduce A, B modulo q to obtain an elliptic curve \overline{E} over the residue field $\mathbb{F}_q := \mathcal{O}_L/\mathfrak{q}$. We then call q a prime of good reduction for E (this is all but finitely many primes of L).

More generally, we call \mathfrak{q} a prime of good reduction for E if there is any model for E with coefficients in \mathcal{O}_L such that $\mathfrak{q} \nmid \Delta(E)$ (this includes general Weierstrass equations that may have good reduction even at primes above 2). In general there is not a single model that works for all primes of good reduction (there is when h(D) = 1).

The first main theorem of complex multiplication

Theorem

Let \mathcal{O} be an imaginary quadratic order of discriminant D and L the splitting field of $H_D(X)$ over $K := \mathbb{Q}(\sqrt{D})$. The map $\Psi : \operatorname{Gal}(L/K) \to \operatorname{cl}(\mathcal{O})$ sending $\sigma \in \operatorname{Gal}(L/K)$ to the unique $\alpha_{\sigma} \in \operatorname{cl}(\mathcal{O})$ such that $j(E)^{\sigma} = \alpha_{\sigma} j(E)$ for $j(E) \in \operatorname{Ell}_{\mathcal{O}}(L)$ is a group isomorphism compatible with the actions of $\operatorname{Gal}(L/K)$ and $\operatorname{cl}(\mathcal{O})$. **Proof**: To the board!

Corollary

Let \mathcal{O} be an imaginary quadratic order with discriminant D. The Hilbert class polynomial $H_D(x)$ is irreducible over $K = \mathbb{Q}(\sqrt{D})$ and for any E/\mathbb{C} with CM by \mathcal{O} the field K(j(E)) is a finite abelian extension of K with $\operatorname{Gal}(K(j(E))/K) \simeq \operatorname{cl}(\mathcal{O})$.

Ring class fields and Kronecker symbols

Definition

Let \mathcal{O} be an imaginary quadratic order with discriminant D. The ring class field of \mathcal{O} (and of D) is the splitting field of $H_D(X)$ over $K = \mathbb{Q}(\sqrt{D})$, equivalently, the field L = K(j(E)) generated by the *j*-invariant of any elliptic curve E/\mathbb{C} with CM by \mathcal{O} .

Definition

Let p be a prime and D an integer. For p > 2 the Kronecker symbol is

$$\left(\frac{D}{p}\right) := \#\{x \in \mathbb{F}_p : x^2 = D\} - 1,$$

and $\left(\frac{D}{2}\right) = 1$ for $D \equiv \pm 1 \mod 8$, $\left(\frac{D}{2}\right) = -1$ for $D \equiv \pm 3 \mod 8$, and $\left(\frac{D}{2}\right) = 0$ otherwise.

Primes that split completely in the ring class field

Definition

A prime $p \in \mathbb{Z}$ splits completely in a number field L if $p\mathcal{O}_L = \mathfrak{q}_1 \cdots \mathfrak{q}_n$ with the \mathfrak{q}_i distinct primes of norm $N\mathfrak{q} = p$ (so $\mathbb{F}_{\mathfrak{q}} = \mathbb{F}_p$).

Theorem

Let \mathcal{O} be an imaginary quadratic order with discriminant D and ring class field L. Let $p \nmid D$ be an odd prime that is unramified in L.¹ The following are equivalent:

(i)
$$p$$
 is the norm of a principal \mathcal{O} -ideal;
(ii) $\left(\frac{D}{p}\right) = 1$ and $H_D(X)$ splits into linear factors in $\mathbb{F}_p[X]$;
(iii) p splits completely in L ;
(iv) $4p = t^2 - v^2D$ for some integers t and v with $t \not\equiv 0 \mod p$.

Proof: To the board!

¹If p does not divide D then in fact it must be unramified in L.

Factoring primes in imaginary quadratic fields

Lemma

Let K be an imaginary quadratic field of discriminant D with ring of integers $\mathcal{O}_K = [1, \omega]$ and let $p \in \mathbb{Z}$ be prime. Every \mathcal{O}_K -ideal of norm p is of the form $\mathfrak{p} = [p, \omega - r]$, where $r \in \mathbb{Z}$ is a root of the minimal polynomial of ω modulo p. The number of such ideals \mathfrak{p} is $1 + (\frac{D}{p}) \in \{0, 1, 2\}$ and the prime factorization of $p\mathcal{O}_K$ is

$$(p) = \begin{cases} \mathfrak{p}\overline{\mathfrak{p}} & \text{if } (\frac{D}{p}) = 1, \\ \mathfrak{p}^2 & \text{if } (\frac{D}{p}) = 0, \\ (p) & \text{if } (\frac{D}{p}) = -1 \end{cases}$$

with $\mathfrak{p} \neq \overline{\mathfrak{p}}$ when $\left(\frac{D}{p}\right) = 1$.

Corollary

When p divides the conductor $[\mathcal{O} : \mathcal{O}_K]$ there are no proper \mathcal{O} -ideals of norm p and otherwise there are $1 - (\frac{D}{p}) = 0, 1, 2$ when p is inert, ramified, split in K, respectively

Class field theory

Definition

The Hilbert class field of a number field K is a maximal unramified² abelian extension.

As conjectured by Hilbert and proved by Furtwängler, if L is the Hilbert class field of K then $\operatorname{Gal}(L/K) \simeq \operatorname{cl}(\mathcal{O}_K)$. The ring class field L of an order \mathcal{O} in an imaginary quadratic field K is the Hilbert class field of K if and only if $\mathcal{O} = \mathcal{O}_K$, since L/K is ramified at primes dividing the conductor of \mathcal{O} .

Each number field L is characterized by the set of primes of \mathbb{Q} that split completely in L; for any two number fields these sets are either equal or have infinite difference.

Corollary

Let \mathcal{O} be an order of discriminant D in an imaginary quadratic field K. The splitting field L of $H_D(X)$ over K is unramified at all primes that do not divide the conductor of \mathcal{O} . In particular, every rational prime $p \nmid D$ is unramified in L.

²This includes "infinite primes" of K; these are always unramified when K is imaginary quadratic.

The norm equation

The equation

$$4p = t^2 - v^2 D \tag{1}$$

in part (iv) of the theorem is known as the norm equation. It arises from the principal \mathcal{O} -ideal (λ) of norm p given by part (i), generated by a root $\lambda \in \mathcal{O} \subseteq \mathcal{O}_K$ of $x^2 - tx + p$, which has norm p and trace t. By the quadratic equation

$$\lambda = \frac{-t \pm \sqrt{t^2 - 4p}}{2} = \frac{-t \pm v\sqrt{D}}{2}$$

Clearing denominators and taking norms yields $N(2\lambda) = 4\lambda \overline{\lambda} = 4p = t^2 - v^2 D$.

The primes p that split completely in the ring class field of \mathcal{O} , are precisely those that satisfy (1) for soem t, v. For D < -4 the value of $\pm t$ is uniquely determined by p.

Reducing endomorphims

Let E/\mathbb{C} have CM by an imaginary quadratic order \mathcal{O} of discriminant D and let p be an odd prime that splits completely in the ring class field L for \mathcal{O} . Then j(E) is a root of $H_D(X)$ that reduces to a root of $H_D(X)$ in the residue field $\mathbb{F}_q = \mathbb{F}_p$ of any prime q of L above p. Pick a model $y^2 = x^3 + Ax + B$ for E over \mathcal{O}_L such that $q \nmid \Delta(E)$

Any nonzero $\varphi \in \operatorname{End}(E)$ is defined by rational functions whose coefficients we can assume lie in \mathcal{O}_L , allowing us to reduce them to $\mathbb{F}_{\mathfrak{q}} = \mathcal{O}_L/\mathfrak{q}$, yielding $\overline{\varphi} \in \operatorname{End}(\overline{E})$ satisfying the characteristic equation of φ . We have an injective ring homomorphism

 $\operatorname{End}(E) \hookrightarrow \operatorname{End}(\overline{E})$

that is in fact a ring isomorphism (by the Duering lifting theorem).

It is clear that for $j(E) \neq 0,1728$ we have an isomorphism of endomorphism algebras, and for $\mathcal{O} = \mathcal{O}_K$ of endomorphism rings, since $t \equiv 0 \mod p$ implies that \overline{E} is ordinary, so $\operatorname{End}(\overline{E})$ must be an order in $K = \mathbb{Q}(\sqrt{D})$.

The Duering lifting theorem

Theorem (Deuring)

Let \mathcal{O} be an imaginary quadratic order of discriminant D with ring class field L, and let q be the norm of a prime ideal in \mathcal{O}_L with $q \perp D$. Then $H_D(X)$ splits into distinct linear factors in $\mathbb{F}_q[X]$ and its roots form the set

 $\operatorname{Ell}_{\mathcal{O}}(\mathbb{F}_q) := \{ j(E) \in \mathbb{F}_q : \operatorname{End}(E) \simeq \mathcal{O} \}$

of *j*-invariants of elliptic curves E/\mathbb{F}_q with CM by \mathcal{O} .

Theorem (Deuring lifting theorem)

Let E/\mathbb{F}_q be an elliptic curve over a finite field and let $\phi \in \operatorname{End}(E)$ be nonzero. There exists an elliptic curve E^* over a number field L with an endomorphism $\phi^* \in \operatorname{End}(E^*)$ such that E^* has good reduction modulo a prime q of L with residue field $\mathcal{O}_L/\mathfrak{q} \simeq \mathbb{F}_q$, and E and ϕ are the reductions modulo q of E^* and ϕ^* .

The CM method

Let \mathcal{O} be an imaginary quadratic order of discriminant D < -4, and let $p \nmid D$ be an odd prime satisfying the norm equation $4p = t^2 - v^2 D$ (via Cornacchia's algorithm).

Given the Hilbert class polynomial $H_D \in \mathbb{Z}[X]$, we can reduce it modulo p and use any root j to construct an elliptic curve E/\mathbb{F}_p defined by $y^2 = x^3 + Ax + B$ by putting A = 3j(1728 - j) and $B = 2j(1728 - j)^2$. We then must have

 $#E(\mathbb{F}_p) = p + 1 \pm t$

since π_E has norm p and must therefore have trace $\pm t$ by the norm equation. By taking a quadratic twist we can achieve either sign.

If we want $\#E(\mathbb{F}_p) = N$ we instead solve $4N = a^2 - v^2D$ for some discriminant D, put t := a + 2, and check if p := N - 1 + t is prime. If so then

$$4p = 4N - 4 + 4t = a^{2} - v^{2}D - 4 + 4a + 8 = (a + 2)^{2} - v^{2}D = t^{2} - v^{2}D,$$

and if not we try using a different D.

Summing up the theory of complex multiplication

Let \mathcal{O} be an imaginary quadratic order of discriminant D.

Objects: elliptic curves, lattices, proper ideals, binary quadratic forms. Equivalences: isomorphism, homethety, ideal classes, $SL_2(\mathbb{Z})$ -equivalence.

If we put $K = \mathbb{Q}(\sqrt{D})$ then $\operatorname{Gal}(K(j(E))/K) \simeq \operatorname{cl}(\mathcal{O})$ for any $j(E) \in \operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$