18.783 Elliptic Curves Lecture 21

Andrew Sutherland

April 25, 2022

The first main theorem of complex multiplication

Let \mathcal{O} be an imaginary quadratic order with discriminant D, and let

$$
\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}):=\{j(E) \in \mathbb{C}: \operatorname{End}(E)=\mathcal{O}\}
$$

In the previous lecture we proved that the Hilbert class polynomial

$$
H_{D}(X):=H_{\mathcal{O}}(X):=\prod_{j(E) \in \mathrm{Ell}_{\mathcal{O}}(\mathbb{C})}(X-j(E))
$$

has integer coefficients. We defined L to be the splitting field of $H_{D}(X)$ over $K:=\mathbb{Q}(\sqrt{D})$, and showed that there is an injective group homomorphism

$$
\Psi: \operatorname{Gal}(L / K) \hookrightarrow \operatorname{cl}(\mathcal{O})
$$

that commutes with the group actions of $\operatorname{Gal}(L / K)$ and $\operatorname{cl}(\mathcal{O})$ on the roots of $H_{D}(X)$. It remains to show that Ψ is surjective, equivalently, that $H_{D}(X)$ is irreducible over K.

The decomposition group

Let L / K be a Galois extension of number fields, and let \mathfrak{p} be a prime ideal of $\mathcal{O}_{K}:=K \cap \overline{\mathbb{Z}}($ a "prime" of $K)$. The \mathcal{O}_{L}-ideal $\mathfrak{p} \mathcal{O}_{L}$ has a unique factorization

$$
\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{n}^{e_{n}}
$$

into primes \mathfrak{q}_{i} of L for which $\mathfrak{q}_{i} \cap \mathcal{O}_{K}=\mathfrak{p}$. If $\mathfrak{p} \mathcal{O}_{L}$ is squarefree ($\mathfrak{p} \nmid \operatorname{disc} \mathcal{O}_{K}$) then \mathfrak{p} is unramified in L, and $\operatorname{Gal}(L / K)$ acts transitively on $\{\mathfrak{q} \mid \mathfrak{p}\}:=\left\{q_{1}, \ldots, \mathfrak{q}_{n}\right\}$.

Definition

Let L / K be a Galois extension of number fields, let \mathfrak{p} be a prime of K that is unramified in L. For each prime $\mathfrak{q} \in\{\mathfrak{q} \mid \mathfrak{p}\}$ the stabilizer subgroup

$$
D_{\mathfrak{q}}:=\left\{\sigma \in \operatorname{Gal}(L / K): \mathfrak{q}^{\sigma}=\mathfrak{q}\right\}
$$

is the decomposition group of \mathfrak{q}.

Frobenius elements

Let $\mathbb{F}_{\mathfrak{p}}:=\mathcal{O}_{K} / \mathfrak{p}$ and $\mathbb{F}_{\mathfrak{q}}:=\mathcal{O}_{L} / \mathfrak{q}$ be the residue fields of the maximal ideals \mathfrak{p} and \mathfrak{q} (the rings \mathcal{O}_{K} and \mathcal{O}_{L} are Dedekind domains, so nonzero prime ideals are maximal).
These are finite fields of cardinality $\mathrm{Np}:=\left[\mathcal{O}_{K}: \mathfrak{p}\right]$ and $\mathrm{Nq}:=\left[\mathcal{O}_{L}: \mathfrak{q}\right]$.
The image of \mathcal{O}_{K} in $\mathcal{O}_{L} / \mathfrak{q}$ is $\mathcal{O}_{K} /\left(\mathfrak{q} \cap \mathcal{O}_{K}\right)=\mathcal{O}_{K} / \mathfrak{p}=\mathbb{F}_{\mathfrak{p}}$, so $\mathbb{F}_{\mathfrak{p}}$ is a subfield of $\mathbb{F}_{\mathfrak{q}}$.
Each $\sigma \in D_{\mathfrak{q}}$ fixes \mathfrak{q} and induces an automorphism $\bar{\sigma} \in \operatorname{Gal}\left(\mathbb{F}_{\mathfrak{q}} / \mathbb{F}_{\mathfrak{p}}\right)$ via $\bar{\sigma}(x):=\overline{\sigma(x)}$. When \mathfrak{p} is unramified this defines a group isomorphism

$$
D_{\mathfrak{q}} \xrightarrow{\sim} \operatorname{Gal}\left(\mathbb{F}_{\mathfrak{q}} / \mathbb{F}_{\mathfrak{p}}\right)
$$

Definition

Let L / K be a Galois extension of number fields and \mathfrak{q} a prime of L with $\mathfrak{p}:=\mathfrak{q} \cap \mathcal{O}_{K}$ unramified. The unique $\sigma_{\mathfrak{q}} \in D_{\mathfrak{q}}$ for which $\bar{\sigma}_{\mathfrak{q}}$ is the Frobenius automorphism $x \mapsto x^{\mathrm{Np}}$ is the Frobenius element at \mathfrak{q}. The Frobenius elements of $\mathfrak{q} \mid \mathfrak{p}$ are all conjugate, and we use $\sigma_{\mathfrak{p}}$ to denote this conjugacy class; $\sigma_{\mathfrak{p}}$ is a single element when $\operatorname{Gal}(L / K)$ is abelian.

Primes of good reduction

If E / \mathbb{C} has CM by an imaginary quadratic order \mathcal{O} of discriminant $D:=\operatorname{disc} \mathcal{O}$, then $j(E)$ is a root of $H_{D}(X)$ in the splitting field L of $H_{D}(X)$ over $K:=\mathbb{Q}(\sqrt{D})$, and we can choose a Weierstrass model $y^{2}=x^{3}+A x+B$ for E with $A, B \in \mathcal{O}_{L}$ (take $A=3 j(E)\left(1728-j(E)\right.$) and $B=2 j(E)(1728-j(E))^{2}$, for example).

For primes \mathfrak{q} of L that do not divide $\Delta(E):=-16\left(4 A^{3}+27 B^{2}\right)$ we can reduce A, B modulo \mathfrak{q} to obtain an elliptic curve \bar{E} over the residue field $\mathbb{F}_{\mathfrak{q}}:=\mathcal{O}_{L} / \mathfrak{q}$. We then call \mathfrak{q} a prime of good reduction for E (this is all but finitely many primes of L).

More generally, we call \mathfrak{q} a prime of good reduction for E if there is any model for E with coefficients in \mathcal{O}_{L} such that $\mathfrak{q} \nmid \Delta(E)$ (this includes general Weierstrass equations that may have good reduction even at primes above 2). In general there is not a single model that works for all primes of good reduction (there is when $h(D)=1$).

The first main theorem of complex multiplication

Theorem

Let \mathcal{O} be an imaginary quadratic order of discriminant D and L the splitting field of $H_{D}(X)$ over $K:=\mathbb{Q}(\sqrt{D})$. The map $\Psi: \operatorname{Gal}(L / K) \rightarrow \operatorname{cl}(\mathcal{O})$ sending $\sigma \in \operatorname{Gal}(L / K)$ to the unique $\alpha_{\sigma} \in \operatorname{cl}(\mathcal{O})$ such that $j(E)^{\sigma}=\alpha_{\sigma} j(E)$ for $j(E) \in \operatorname{Ell}_{\mathcal{O}}(L)$ is a group isomorphism compatible with the actions of $\operatorname{Gal}(L / K)$ and $\operatorname{cl}(\mathcal{O})$.
Proof: To the board!

Corollary

Let \mathcal{O} be an imaginary quadratic order with discriminant D. The Hilbert class polynomial $H_{D}(x)$ is irreducible over $K=\mathbb{Q}(\sqrt{D})$ and for any E / \mathbb{C} with $C M$ by \mathcal{O} the field $K(j(E))$ is a finite abelian extension of K with $\operatorname{Gal}(K(j(E)) / K) \simeq \operatorname{cl}(\mathcal{O})$.

Ring class fields and Kronecker symbols

Definition

Let \mathcal{O} be an imaginary quadratic order with discriminant D. The ring class field of \mathcal{O} (and of D) is the splitting field of $H_{D}(X)$ over $K=\mathbb{Q}(\sqrt{D})$, equivalently, the field $L=K(j(E))$ generated by the j-invariant of any elliptic curve E / \mathbb{C} with CM by \mathcal{O}.

Definition

Let p be a prime and D an integer. For $p>2$ the Kronecker symbol is

$$
\left(\frac{D}{p}\right):=\#\left\{x \in \mathbb{F}_{p}: x^{2}=D\right\}-1
$$

and $\left(\frac{D}{2}\right)=1$ for $D \equiv \pm 1 \bmod 8,\left(\frac{D}{2}\right)=-1$ for $D \equiv \pm 3 \bmod 8$, and $\left(\frac{D}{2}\right)=0$ otherwise.

Primes that split completely in the ring class field

Definition

A prime $p \in \mathbb{Z}$ splits completely in a number field L if $p \mathcal{O}_{L}=\mathfrak{q}_{1} \cdots \mathfrak{q}_{n}$ with the \mathfrak{q}_{i} distinct primes of norm $N \mathfrak{q}=p$ (so $\mathbb{F}_{\mathfrak{q}}=\mathbb{F}_{p}$).

Theorem

Let \mathcal{O} be an imaginary quadratic order with discriminant D and ring class field L. Let $p \nmid D$ be an odd prime that is unramified in L. ${ }^{1}$ The following are equivalent:
(i) p is the norm of a principal \mathcal{O}-ideal;
(ii) $\left(\frac{D}{p}\right)=1$ and $H_{D}(X)$ splits into linear factors in $\mathbb{F}_{p}[X]$;
(iii) p splits completely in L;
(iv) $4 p=t^{2}-v^{2} D$ for some integers t and v with $t \not \equiv 0 \bmod p$.

Proof: To the board!

[^0]
Factoring primes in imaginary quadratic fields

Lemma

Let K be an imaginary quadratic field of discriminant D with ring of integers $\mathcal{O}_{K}=[1, \omega]$ and let $p \in \mathbb{Z}$ be prime. Every \mathcal{O}_{K}-ideal of norm p is of the form $\mathfrak{p}=[p, \omega-r]$, where $r \in \mathbb{Z}$ is a root of the minimal polynomial of ω modulo p. The number of such ideals \mathfrak{p} is $1+\left(\frac{D}{p}\right) \in\{0,1,2\}$ and the prime factorization of $p \mathcal{O}_{K}$ is

$$
(p)= \begin{cases}\mathfrak{p} \overline{\mathfrak{p}} & \text { if }\left(\frac{D}{p}\right)=1 \\ \mathfrak{p}^{2} & \text { if }\left(\frac{D}{p}\right)=0, \\ (p) & \text { if }\left(\frac{D}{p}\right)=-1\end{cases}
$$

with $\mathfrak{p} \neq \overline{\mathfrak{p}}$ when $\left(\frac{D}{p}\right)=1$.

Corollary

When p divides the conductor $\left[\mathcal{O}: \mathcal{O}_{K}\right]$ there are no proper \mathcal{O}-ideals of norm p and otherwise there are $1-\left(\frac{D}{p}\right)=0,1,2$ when p is inert, ramified, split in K, respectively

Class field theory

Definition

The Hilbert class field of a number field K is a maximal unramified ${ }^{2}$ abelian extension.
As conjectured by Hilbert and proved by Furtwängler, if L is the Hilbert class field of K then $\operatorname{Gal}(L / K) \simeq \operatorname{cl}\left(\mathcal{O}_{K}\right)$. The ring class field L of an order \mathcal{O} in an imaginary quadratic field K is the Hilbert class field of K if and only if $\mathcal{O}=\mathcal{O}_{K}$, since L / K is ramified at primes dividing the conductor of \mathcal{O}.
Each number field L is characterized by the set of primes of \mathbb{Q} that split completely in L; for any two number fields these sets are either equal or have infinite difference.

Corollary

Let \mathcal{O} be an order of discriminant D in an imaginary quadratic field K. The splitting field L of $H_{D}(X)$ over K is unramified at all primes that do not divide the conductor of \mathcal{O}. In particular, every rational prime $p \nmid D$ is unramified in L.

[^1]
The norm equation

The equation

$$
\begin{equation*}
4 p=t^{2}-v^{2} D \tag{1}
\end{equation*}
$$

in part (iv) of the theorem is known as the norm equation. It arises from the principal \mathcal{O}-ideal (λ) of norm p given by part (i), generated by a root $\lambda \in \mathcal{O} \subseteq \mathcal{O}_{K}$ of $x^{2}-t x+p$, which has norm p and trace t. By the quadratic equation

$$
\lambda=\frac{-t \pm \sqrt{t^{2}-4 p}}{2}=\frac{-t \pm v \sqrt{D}}{2}
$$

Clearing denominators and taking norms yields $\mathrm{N}(2 \lambda)=4 \lambda \bar{\lambda}=4 p=t^{2}-v^{2} D$.
The primes p that split completely in the ring class field of \mathcal{O}, are precisely those that satisfy (1) for soem t, v. For $D<-4$ the value of $\pm t$ is uniquely determined by p.

Reducing endomorphims

Let E / \mathbb{C} have $C M$ by an imaginary quadratic order \mathcal{O} of discriminant D and let p be an odd prime that splits completely in the ring class field L for \mathcal{O}. Then $j(E)$ is a root of $H_{D}(X)$ that reduces to a root of $H_{D}(X)$ in the residue field $\mathbb{F}_{\mathfrak{q}}=\mathbb{F}_{p}$ of any prime \mathfrak{q} of L above p. Pick a model $y^{2}=x^{3}+A x+B$ for E over \mathcal{O}_{L} such that $\mathfrak{q} \nmid \Delta(E)$

Any nonzero $\varphi \in \operatorname{End}(E)$ is defined by rational functions whose coefficients we can assume lie in \mathcal{O}_{L}, allowing us to reduce them to $\mathbb{F}_{\mathfrak{q}}=\mathcal{O}_{L} / \mathfrak{q}$, yielding $\bar{\varphi} \in \operatorname{End}(\bar{E})$ satisfying the characteristic equation of φ. We have an injective ring homomorphism

$$
\operatorname{End}(E) \hookrightarrow \operatorname{End}(\bar{E})
$$

that is in fact a ring isomorphism (by the Duering lifting theorem).
It is clear that for $j(E) \neq 0,1728$ we have an isomorphism of endomorphism algebras, and for $\mathcal{O}=\mathcal{O}_{K}$ of endomorphism rings, since $t \equiv 0 \bmod p$ implies that \bar{E} is ordinary, so $\operatorname{End}(\bar{E})$ must be an order in $K=\mathbb{Q}(\sqrt{D})$.

The Duering lifting theorem

Theorem (Deuring)

Let \mathcal{O} be an imaginary quadratic order of discriminant D with ring class field L, and let q be the norm of a prime ideal in \mathcal{O}_{L} with $q \perp D$. Then $H_{D}(X)$ splits into distinct linear factors in $\mathbb{F}_{q}[X]$ and its roots form the set

$$
\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{q}\right):=\left\{j(E) \in \mathbb{F}_{q}: \operatorname{End}(E) \simeq \mathcal{O}\right\}
$$

of j-invariants of elliptic curves E / \mathbb{F}_{q} with $C M$ by \mathcal{O}.

Theorem (Deuring lifting theorem)

Let E / \mathbb{F}_{q} be an elliptic curve over a finite field and let $\phi \in \operatorname{End}(E)$ be nonzero. There exists an elliptic curve E^{*} over a number field L with an endomorphism $\phi^{*} \in \operatorname{End}\left(E^{*}\right)$ such that E^{*} has good reduction modulo a prime \mathfrak{q} of L with residue field $\mathcal{O}_{L} / \mathfrak{q} \simeq \mathbb{F}_{q}$, and E and ϕ are the reductions modulo \mathfrak{q} of E^{*} and ϕ^{*}.

The CM method

Let \mathcal{O} be an imaginary quadratic order of discriminant $D<-4$, and let $p \nmid D$ be an odd prime satisfying the norm equation $4 p=t^{2}-v^{2} D$ (via Cornacchia's algorithm).
Given the Hilbert class polynomial $H_{D} \in \mathbb{Z}[X]$, we can reduce it modulo p and use any root j to construct an elliptic curve E / \mathbb{F}_{p} defined by $y^{2}=x^{3}+A x+B$ by putting $A=3 j(1728-j)$ and $B=2 j(1728-j)^{2}$. We then must have

$$
\# E\left(\mathbb{F}_{p}\right)=p+1 \pm t
$$

since π_{E} has norm p and must therefore have trace $\pm t$ by the norm equation. By taking a quadratic twist we can achieve either sign.

If we want $\# E\left(\mathbb{F}_{p}\right)=N$ we instead solve $4 N=a^{2}-v^{2} D$ for some discriminant D, put $t:=a+2$, and check if $p:=N-1+t$ is prime. If so then

$$
4 p=4 N-4+4 t=a^{2}-v^{2} D-4+4 a+8=(a+2)^{2}-v^{2} D=t^{2}-v^{2} D
$$

and if not we try using a different D.

Summing up the theory of complex multiplication

Let \mathcal{O} be an imaginary quadratic order of discriminant D.

Objects: elliptic curves, lattices, proper ideals, binary quadratic forms. Equivalences: isomorphism, homethety, ideal classes, $\mathrm{SL}_{2}(\mathbb{Z})$-equivalence.

If we put $K=\mathbb{Q}(\sqrt{D})$ then $\operatorname{Gal}(K(j(E)) / K) \simeq \operatorname{cl}(\mathcal{O})$ for any $j(E) \in \operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$

[^0]: ${ }^{1}$ If p does not divide D then in fact it must be unramified in L.

[^1]: ${ }^{2}$ This includes "infinite primes" of K; these are always unramified when K is imaginary quadratic.

