18.783 Elliptic Curves Lecture 20

Andrew Sutherland

April 20, 2022

The modular polynomial $\Phi_{N} \in \mathbb{Z}[X, Y]$

In the last lecture we proved that $\mathbb{C}\left(\Gamma_{0}(N)\right)=\mathbb{C}\left(j, j_{N}\right)$, where $j_{N}(\tau):=j(N \tau)$.

Definition

The modular polynomial Φ_{N} is the minimal polynomial of j_{N} over $\mathbb{C}(j)$.
We may write $\Phi_{N} \in \mathbb{C}(j)[Y]$ as

$$
\Phi_{N}(Y)=\prod_{i=1}^{n}\left(Y-j_{N}\left(\gamma_{i} \tau\right)\right)
$$

where $\left\{\gamma_{1}, \ldots \gamma_{n}\right\}$ is a set of right coset representatives for $\Gamma_{0}(N)$.
The coefficients of $\Phi_{N}(Y)$ are symmetric polynomials in $j_{N}\left(\gamma_{i} \tau\right)$ and lie in $\mathbb{C}[j]$.
If we replace j by X we obtain a polynomial $\Phi_{N}(X, Y)$ whose coefficients lie in \mathbb{Z}. It is a canonical plane (singular) model for the modular curve $X_{0}(N)$.

Isogenies

If $L_{1} \subseteq L_{2}$ are lattices in \mathbb{C}, and $E_{1}:=E_{L_{1}}$ and $E_{2}:=E_{L_{2}}$ are the corresponding elliptic curves over \mathbb{C}, the inclusion $L_{1} \subseteq L_{2}$ induces an isogeny $\phi: E_{1} \rightarrow E_{2}$ whose kernel is isomorphic to the finite abelian group L_{2} / L_{1}.

If we replace L_{2} by the homothetic lattice $N L_{2}$, where $N=\left[L_{2}: L_{1}\right]=\operatorname{deg} \phi$, the inclusion $N L_{2} \subseteq L_{1}$ induces the dual isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ (up to isomorphism).

The composition $\phi \circ \hat{\phi}$ is the multiplication-by- N map on E_{2}, corresponding to the lattice inclusion $N L_{2} \subseteq L_{2}$, with kernel $L_{2} / N L_{2} \simeq \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z} \simeq E_{2}[N]$.

Cyclic lattices and isogenies

Definition

If $L_{1} \subseteq L_{2}$ with L_{2} / L_{1} cyclic, then L_{1} is a cyclic sublattice of L_{2}.
An isogeny $\phi: E_{1} \rightarrow E_{2}$ is cyclic if its kernel is cyclic.
If ϕ is induced by $L_{1} \subseteq L_{2}$ then ϕ is cyclic if and only if L_{1} is a cyclic sublattice of L_{2}.
Every isogeny is a composition of cyclic isogenies (since prime degree implies cyclic).
We thus restrict our attention to cyclic sublattices of prime index.

Lemma

Let $L=[1, \tau]$ be a lattice with $\tau \in \mathcal{H}$ and let N be prime. The cyclic sublattices of L of index N are the lattice $[1, N \tau]$ and the lattices $[N, \tau+k]$, for $0 \leq k<N$.
Proof: To the board!

Roots of the modular polynomial represent isogenies

Theorem

For all $j_{1}, j_{2} \in \mathbb{C}$, we have $\Phi_{N}\left(j_{1}, j_{2}\right)=0$ if and only if j_{1} and j_{2} are the j-invariants of elliptic curves over \mathbb{C} over that are related by a cyclic isogeny of degree N.
Proof: To the board!

This theorem also applies to any field that can be embedded in \mathbb{C}, including all number fields. It can be extended via the Lefschetz principle to any field of characteristic zero, and as shown by Igusa, to fields of positive characteristic $p \nmid N$.

Theorem

Let $N>1$ be an integer and let k be a field of characteristic not dividing N. For all $j_{1}, j_{2} \in k$ we have $\Phi_{N}\left(j_{1}, j_{2}\right)=0$ if and only if j_{1} and j_{2} are the j-invariants of elliptic curves over k that are related by a cyclic isogeny of degree N defined over k.

A few words of warning...

Remark

Over \mathbb{C} we have $\Phi_{N}\left(j\left(E_{1}\right), j\left(E_{2}\right)\right)=0$ if and only if E_{1} and E_{2} are related by a cyclic isogeny of degree N, but this is not true in general because $j\left(E_{1}\right)=j\left(E_{2}\right)$ only implies $E_{1} \simeq E_{2}$ over algebraically closed fields. In general we may need to consider twists.

Remark

We should note that if $\phi: E_{1} \rightarrow E_{2}$ is a cyclic N-isogeny, the pair of j-invariants $\left(j\left(E_{1}\right), j\left(E_{2}\right)\right)$ does not uniquely determine ϕ, not even up to isomorphism.
Suppose $\operatorname{End}\left(E_{1}\right) \simeq \mathcal{O}$ and $\mathfrak{p} \neq \overline{\mathfrak{p}}$ is a proper \mathcal{O}-ideal of prime norm such that $[\mathfrak{p}]$ has order 2 in $\operatorname{cl}(\mathcal{O})$. Then $\mathfrak{p} E_{1} \simeq \overline{\mathfrak{p}} E_{1}$ but $\phi_{\mathfrak{p}}: E_{1} \rightarrow \mathfrak{p} E_{1}$ and $\phi_{\bar{p}}: E_{1} \rightarrow \overline{\mathfrak{p}} E_{1}$ have distinct kernels and cannot be related by an isomorphism.
In this situation $\Phi_{p}\left(j\left(E_{1}\right), Y\right)$ will have $j\left(E_{2}\right)$ as a double root.

The polynomial $\Phi_{N} \in \mathbb{Z}[X, Y]$

The dual isogeny implies that $\Phi_{N}\left(j_{1}, j_{2}\right)=0$ if and only if $\Phi_{N}\left(j_{2}, j_{1}\right)=0$. In fact $\Phi_{N}(X, Y)=\Phi_{N}(Y, X)$ is symmetric in the variables X and Y.

Theorem

$$
\Phi_{N}(X, Y)=\Phi_{N}(Y, X) \text { for all } N>1
$$

Proof:To the board!

It follows that for prime N the polynomial $\Phi_{N}(X, Y)$ has degree $N+1$ in X and Y.

Example

For $N=2$ we have

$$
\begin{aligned}
\Phi_{2}(X, Y)=X^{3}+Y^{3} & -X^{2} Y^{2}+1488\left(X^{2} Y+X Y^{2}\right)-162000\left(X^{2}+Y^{2}\right) \\
& +40773375 X Y+8748000000(X+Y)-157464000000000
\end{aligned}
$$

The bitsize of Φ_{N} is $O\left(N^{3} \log N\right)$; Φ_{1009} is about 4 GB , and Φ_{10007} is about 5 TB .

Moduli spaces

In the same way that the j-function defines a bijection from $Y(1)=\mathcal{H} / \Gamma(1)$ to \mathbb{C} (which we may regard as an affine curve in \mathbb{C}^{2}), the functions $j(\tau)$ and $j_{N}(\tau)$ define a bijection from $Y_{0}(N)=\mathcal{H} / \Gamma_{0}(N)$ to the affine curve $\Phi_{N}(X, Y)=0$ via the map

$$
\tau \mapsto\left(j(\tau), j_{N}(\tau)\right)
$$

If $\left\{\gamma_{k}\right\}$ is a set of right coset representatives for $\Gamma_{0}(N)$ then for each γ_{k} we have

$$
\gamma_{k} \tau \mapsto\left(j\left(\gamma_{k} \tau\right), j_{N}\left(\gamma_{k} \tau\right)\right)=\left(j(\tau), j_{N}\left(\gamma_{k} \tau\right)\right),
$$

These points correspond to cyclic N-isogenies $E \rightarrow E^{\prime}$ with $j(E)=j(\tau)$ and $\left.j\left(E^{\prime}\right)=j_{N}\left(\gamma_{k} \tau\right)\right)$. We can thus view the modular curve $Y_{0}(N)$, equivalently, the non-cuspidal points on $X_{0}(N)$, as parameterizing cyclic N-isogenies.

But recall our warning that the pair $\left(j(E), j\left(E^{\prime}\right)\right)$ do not uniquely determine $E \rightarrow E^{\prime}$.

Moduli spaces

A cyclic N-isogeny $\phi: E \rightarrow E^{\prime}$ is uniquely determined by a pair $(E,\langle P\rangle)$, where P is any generator for $\operatorname{ker} \phi$ (so P is a point of order N).

Every such pair $(E,\langle P\rangle)$ thus corresponds to a non-cuspidal point of $X_{0}(N)$. Two pairs $(E,\langle P\rangle)$ and $\left(E^{\prime},\left\langle P^{\prime}\right\rangle\right)$ correspond to the same point if and only if there exists an isomorphism $\varphi: E \xrightarrow{\sim} E^{\prime}$ such that $\varphi(\langle P\rangle)=\left\langle P^{\prime}\right\rangle$.

The modular curve $X_{0}(N)$ is the moduli space of cyclic N-isogenies of elliptic curves, in which each non-cuspidal point represents an isomorphism class of pairs $(E,\langle P\rangle)$.

For $X(N)$ take isomorphism classes of triples $\left(E, P_{1}, P_{2}\right)$, where $E[N]=\left\langle P_{1}, P_{2}\right\rangle$. For $X_{1}(N)$ take isomorphism classes of pairs (E, P), where $P \in E[N]$ has order N. As above, these describe the non-cuspidal points, there are also cusps.

Elliptic curves with complex multiplication

Recall that for each imaginary quadratic order \mathcal{O}, we have the set

$$
\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}):=\{j(E) \in \mathbb{C}: \operatorname{End}(E) \simeq \mathcal{O}\}
$$

of isomorphism classes of elliptic curves with complex multiplication (CM) by \mathcal{O}. Every elliptic curve E / \mathbb{C} with CM by \mathcal{O} is of the form $E_{\mathfrak{b}}$, where \mathfrak{b} is a proper \mathcal{O}-ideal for which $j(\mathfrak{b})=j(E)$ (note that $j(\mathfrak{b})=j(E)$ depends only on the class $[\mathfrak{b}]$ in $\operatorname{cl}(\mathcal{O})$). If $[\mathfrak{a}]$ is an element of $\operatorname{cl}(\mathcal{O})$, then \mathfrak{a} acts on $E_{\mathfrak{b}}$ by the isogeny

$$
\phi_{\mathfrak{a}}: E_{\mathfrak{b}} \rightarrow E_{\mathfrak{a}^{-1} \mathfrak{b}}
$$

of degree Na induced by the lattice inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1} \mathfrak{b}$. As with $E_{\mathfrak{b}}$, the isomorphism class of $E_{\mathfrak{a}^{-1} \mathfrak{b}}$ depends only on the class $\left[\mathfrak{a}^{-1} \mathfrak{b}\right]$ in $\operatorname{cl}(\mathcal{O})$, and we proved that this action is free and transitive, meaning that $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\operatorname{cl}(\mathcal{O})$-torsor.

The set $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is finite, with cardinality equal to the class number $h(\mathcal{O}):=\# \operatorname{cl}(\mathcal{O})$.

The Hilbert class polynomial

Definition

Let \mathcal{O} be an imaginary quadratic order of discriminant D. The polynomial

$$
H_{\mathcal{O}}(X):=H_{D}(X):=\prod_{j(E) \in \mathrm{Ell}_{\mathcal{O}}(\mathbb{C})}(X-j(E))
$$

is the Hilbert class polynomial for \mathcal{O} (and for D), a monic polynomial of degree $h(\mathcal{O})$. Its roots are the j-invariants of all elliptic curves with CM by \mathcal{O}.

Lemma

If N is prime then the leading term of $\Phi_{N}(X, X) \in \mathbb{Z}[X]$ is $-X^{2 N}$.
Proof: To the board!

Remark

This lemma does not hold for general N.

The Hilbert class polynomial

Theorem

Let \mathcal{O} be an imaginary quadratic order. Every ideal class in $\mathrm{cl}(\mathcal{O})$ contains infinitely many ideals of prime norm. Proof: See Theorems 7.7 and 9.12 in Cox.

Theorem

The coefficients of the Hilbert class polynomial $H_{D}(X)$ are integers.
Proof: To the board!

Corollary

Let E / \mathbb{C} be an elliptic curve with complex multiplication. Then $j(E) \in \overline{\mathbb{Z}}$.

The action of Galois

The groups $\operatorname{cl}(\mathcal{O})$ and $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ both act on the roots of $H_{D}(X)$. How are these group actions related?

We consider $\operatorname{Gal}(L / K)$, where L is the splitting field of $H_{D}(X)$ over $K=\mathbb{Q}(\sqrt{D})$. (we use K rather than \mathbb{Q} because $\operatorname{Gal}(L / K)$ acts trivially on \mathcal{O}).

The first main theorem of complex multiplication states that $\operatorname{Gal}(L / K) \simeq \operatorname{cl}(\mathcal{O})$.
Let \mathcal{O} be the imaginary quadratic order of discriminant D, and fix E_{1} with CM by \mathcal{O}.
Each $\sigma \in \operatorname{Gal}(L / K)$ can be viewed as the restriction to L of an element of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ that fixes K, and the elliptic curve E_{1}^{σ} also has CM by \mathcal{O}.

Thus $E_{1}^{\sigma} \simeq \mathfrak{a} E_{1}$ for some proper \mathcal{O}-ideal \mathfrak{a}, since $\operatorname{cl}(\mathcal{O})$ acts transitively on $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$.

The first main theorem of complex multiplication

If $E_{2} \simeq \mathfrak{b} E_{1}$ is any other elliptic curve with CM by \mathcal{O}, then

$$
E_{2}^{\sigma} \simeq\left(\mathfrak{b} E_{1}\right)^{\sigma}=\mathfrak{b}^{\sigma} E_{1}^{\sigma}=\mathfrak{b} E_{1}^{\sigma} \simeq \mathfrak{b a} E_{1}=\mathfrak{a b} E_{1} \simeq \mathfrak{a} E_{2}
$$

(the innocent looking identity $\left(\mathfrak{b} E_{1}\right)^{\sigma}=\mathfrak{b}^{\sigma} E_{1}^{\sigma}$ is not immediate; see Silverman).
Thus the action of σ is the same as the action of \mathfrak{a}.
Because $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\operatorname{cl}(\mathcal{O})$-torsor, the map that sends each $\sigma \in \operatorname{Gal}(\bar{K} / K)$ to the unique class $[\mathfrak{a}] \in \operatorname{cl}(\mathcal{O})$ for which $E_{1}^{\sigma}=\mathfrak{a} E_{1}$ defines a group homomorphism

$$
\Psi: \operatorname{Gal}(L / K) \rightarrow \operatorname{cl}(\mathcal{O})
$$

This homomorphism is injective because, the only the identity in $\operatorname{Gal}(L / K)$ acts trivially on the roots of $H_{D}(X)$, and the same is true of $\operatorname{cl}(\mathcal{O})$. We have an embedding of $\operatorname{Gal}(L / K)$ in $\operatorname{cl}(\mathcal{O})$ that is compatible with the actions of both groups on $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$.

It remains only to prove that Ψ is surjective, equivalently, $H_{D}(X)$ is irreducible over K.

