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Modular curves

Definition

The principal congruence subgroup T'(N) is defined by

N) ={(24) €SL2(2): (23) = (§7) mod N}

A congruence subgroup (of level N) is a subgroup of SLa(Z) that contains I'(N), e.g
1(V) = {(
{

o(N) == {(

A classical modular curve is a quotient of H* or H by a congruence subgroup

[

) €SLa(Z) : (2§) = (

cd

) €SLy(Z) : (25) = (

ab
cd
ab
cd
We now define the classical modular curves

X(N):=H*/T(N),  Xy(N):=H/Ti(N),  Xo(N):=H"/To(N).



g-expansions

The map g: H — D defined by
q(1) = ™7 = 72T (cos(2mreT) + isin(2mwre 7))

bijectively maps each vertical strip H,, := {7 € H:n <rer <n+ 1} (for any n € Z)
to the punctured unit disk Dy := D — {0}. Note that ¢(7) — 0 as im 7 — oo.

If f: H — C is a meromorphic function that satisfies f(7 + 1) = f(7) for all 7 € H,

then we can write f in the form f(7) = f*(q(7)), where f*: Dy — C is a meromorphic

function that we can define by fixing a vertical strip H,, and putting f* := fo (qmn)_l.

Definition

The g-expansion (or g-series) of a meromorphic f: H — C with f(7+ 1) = f(7) is
+oo +oo

fF) =)= > anag(r)"= Y and"™

n=—oo n=—oo



Cusps

Let I" be a congruence subgroup of level N. Then v = (%) €T, and y7 =7+ N.
If f: H — C is meromorphic and I'-invariant, then f(7 + N) = f(7) and we can write

[e.9]

Fr) =)™y = 3 ang"™.
If f* is meromorphic at 0 then
f(r)= Z anqn/N (an, # 0).

and say that f is meromorphic at co (with order ng at oo). If f(~7) is meromorphic
at oo for every v € SLa(Z) then we say that f is meromorphic at the cusps.

Recall that the SLy(Z)-orbit of oo in H* is H* — H = P1(Q); the yoo are called cusps,
and T partitions P!(Q) into a finite set of ['-orbits called the cusps of I.



Modular functions

If f: H — Cis a I'-invariant meromorphic function then for every v € I' we have

lim f(y7)=_lim f(7)

im 7—00 im 7—00
whenever either limit exists.

If f is meromorphic at the cusps it must have the same order at co and oo and thus
defines a meromorphic function g: Xp — C on the modular curve Xt := H*/T".

Conversely, each meromorphic g: Xr — C determines a I'-invariant meromorphic
f: H — C that is meromorphic at the cusps via f = g om, where 7: H* — H*/T".

Definition
A modular function for a congruence subgroup I' is a I'-invariant meromorphic function
f: H — C that is meromorphic at the cusps, equivalently, a meromorphic g: Xt — C.



Function fields of modular curves

For any congruence subgroup I' the modular functions for I" for a field C(I") that is a
transcendental extension of C. As we will prove for I' = I'y(N), the Riemann surface
Xr :=H*/I'is an algebraic curve, and C(I") is isomorphic to its function field C(Xt).

In fact every compact Riemann surface S corresponds to a smooth projective curve
over X /C with isomorphic function field C(X) = C(S), and given a smooth projective
curve X/C we can endow the set X (C) with a topology and a complex structure that
makes it a Riemann surface S with C(S) = C(X).

If I C T are congruence subgroups, every modular function for I' is also a modular
function for I, and this induces an inclusion C(T') C C(I") of their function fields that
induces a corresponding morphism X — Xt of modular curves.



The g-expansion of the j-function.

Lemma
Let oi(n) = Xgn d*, and let ¢ = €*™". We have
an”

4 0 7-(6 0
g2(7) = : (1 + 240 Z Gg(n)qn> , g3(1) = 82—7 (1 — 504 Z 0‘5(n)qn> ’

n=1

Corollary

The g-expansion of the j-function is j(T) = q~' + 744 + 3, 5| ang" with a, € Z.
In particular, the j-function is meromorphic at the cusps.

Proof: To the board!



Modular functions for I'(1)

The corollary implies that the j-function is a modular function for I'(1) = SLy(Z).
Recall that the j-function defines a holomorphic bijection Y (1) — C.

If we put j(00) := oo then it defines a meromorphic bijection X (1) — S := P(C)
that has only a simple pole at oo (if we put j(p) := 0, j(i) := 1728 this determines 7).
Theorem

Every modular function for I'(1) is a rational function of j(7), that is, C(I'(1)) = C(yj).
Proof: We have C(j) C C(I'(1)) and the lemma below gives the reverse inclusion.

Lemma

Every meromorphic f: S — C is a rational function.

Corollary

The C[j] is precisely the subring of C(j) = C(I'(1)) that is holomorphic on H.



Modular functions for T'y(INV)

Theorem

Let T" be a congruence subgroup. [C(I") : C(I'(1))] has degree at most [I'(1) : I'].
Proof: To the board!

Remark
If —I €T then in fact [C(I'(1)) : C(T")] = [['(1) : '] (we will prove this for I'o(V)).

Theorem

The function jn (1) := j(NT) is a modular function for T'o(IN).
Proof: To the board!

Theorem
C(To(NN)) = C(j)(Jn) and [C(I'o(N)) : C(I'(1))] = [I'(1) : To(IN)].



The modular polynomial &5 € C[X,Y]

Definition
The modular polynomial @ is the minimal polynomial of jx over C(j).
We may write & € C(j)[Y] as

n

oN(Y) = H(Y — in(%T)),
i=1

where {71,...7v,} is a set of right coset representatives for I'o(NV).

The coefficients of ®x(Y) are symmetric polynomials in jn(7;7), so I'(1)-invariant,
and holomorphic on H, hence lie in C[j]. Thus &y € C[j,Y].

If we replace every occurrence of j in ®x with a new variable X we obtain a
polynomial in C[X, Y] that we write as & (X,Y).



The modular polynomial &y € Z[X, Y]

Lemma
Let S=(97') andT = ({1}). For N prime the right cosets of To(N) in T'(1) are

{PO(N)} U {FO(N)STk 0<k< N}.

Theorem
oy € ZIX,Y].
Proof: To the board!

Lemma (Hasse g-expansion principle)

Let f(7) be a modular function for I'(1) that is holomorphic on H and whose
q-expansion has coefficients that lie in an additive subgroup A of C.
Then f(1) = P(j(7)), for some polynomial P € A[X].



