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Modular curves

Definition
The principal congruence subgroup Γ(N) is defined by

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 0

0 1 ) mod N
}
.

A congruence subgroup (of level N) is a subgroup of SL2(Z) that contains Γ(N), e.g.

Γ1(N) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 ∗

0 1 ) mod N
}

;
Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( ∗ ∗0 ∗ ) mod N

}
.

A classical modular curve is a quotient of H∗ or H by a congruence subgroup.

We now define the classical modular curves

X(N) := H∗/Γ(N), X1(N) := H∗/Γ1(N), X0(N) := H∗/Γ0(N).



q-expansions
The map q : H → D defined by

q(τ) = e2πiτ = e−2π im τ (cos(2π re τ) + i sin(2π re τ))

bijectively maps each vertical strip Hn := {τ ∈ H : n ≤ re τ < n+ 1} (for any n ∈ Z)
to the punctured unit disk D0 := D − {0}. Note that q(τ)→ 0 as im τ →∞.

If f : H → C is a meromorphic function that satisfies f(τ + 1) = f(τ) for all τ ∈ H,
then we can write f in the form f(τ) = f∗(q(τ)), where f∗ : D0 → C is a meromorphic
function that we can define by fixing a vertical strip Hn and putting f∗ := f ◦ (q|Hn

)−1.

Definition
The q-expansion (or q-series) of a meromorphic f : H → C with f(τ + 1) = f(τ) is

f(τ) = f∗(q(τ)) =
+∞∑

n=−∞
anq(τ)n =

+∞∑
n=−∞

anq
n.



Cusps
Let Γ be a congruence subgroup of level N . Then γ =

( 1 N
0 1

)
∈ Γ, and γτ = τ +N .

If f : H → C is meromorphic and Γ-invariant, then f(τ +N) = f(τ) and we can write

f(τ) = f∗(q(τ)1/N ) =
∞∑

n=−∞
anq

n/N .

If f∗ is meromorphic at 0 then

f(τ) =
∞∑

n=n0

anq
n/N (an0 6= 0).

and say that f is meromorphic at ∞ (with order n0 at ∞). If f(γτ) is meromorphic
at ∞ for every γ ∈ SL2(Z) then we say that f is meromorphic at the cusps.

Recall that the SL2(Z)-orbit of ∞ in H∗ is H∗ −H = P1(Q); the γ∞ are called cusps,
and Γ partitions P1(Q) into a finite set of Γ-orbits called the cusps of Γ.



Modular functions

If f : H → C is a Γ-invariant meromorphic function then for every γ ∈ Γ we have

lim
im τ→∞

f(γτ) = lim
im τ→∞

f(τ)

whenever either limit exists.

If f is meromorphic at the cusps it must have the same order at ∞ and γ∞ and thus
defines a meromorphic function g : XΓ → C on the modular curve XΓ := H∗/Γ.

Conversely, each meromorphic g : XΓ → C determines a Γ-invariant meromorphic
f : H → C that is meromorphic at the cusps via f = g ◦ π, where π : H∗ → H∗/Γ.

Definition
A modular function for a congruence subgroup Γ is a Γ-invariant meromorphic function
f : H → C that is meromorphic at the cusps, equivalently, a meromorphic g : XΓ → C.



Function fields of modular curves

For any congruence subgroup Γ the modular functions for Γ for a field C(Γ) that is a
transcendental extension of C. As we will prove for Γ = Γ0(N), the Riemann surface
XΓ := H∗/Γ is an algebraic curve, and C(Γ) is isomorphic to its function field C(XΓ).

In fact every compact Riemann surface S corresponds to a smooth projective curve
over X/C with isomorphic function field C(X) = C(S), and given a smooth projective
curve X/C we can endow the set X(C) with a topology and a complex structure that
makes it a Riemann surface S with C(S) = C(X).

If Γ′ ⊆ Γ are congruence subgroups, every modular function for Γ is also a modular
function for Γ′, and this induces an inclusion C(Γ) ⊆ C(Γ′) of their function fields that
induces a corresponding morphism XΓ′ → XΓ of modular curves.



The q-expansion of the j-function.

Lemma
Let σk(n) =

∑
d|n d

k, and let q = e2πiτ . We have

g2(τ) = 4π4

3

(
1 + 240

∞∑
n=1

σ3(n)qn
)
, g3(τ) = 8π6

27

(
1− 504

∞∑
n=1

σ5(n)qn
)
,

∆(τ) = g2(τ)3 − 27g3(τ)2 = (2π)12q
∞∏
n=1

(1− qn)24.

Corollary
The q-expansion of the j-function is j(τ) = q−1 + 744 +

∑
n≥1 anq

n with an ∈ Z.
In particular, the j-function is meromorphic at the cusps.
Proof: To the board!



Modular functions for Γ(1)
The corollary implies that the j-function is a modular function for Γ(1) = SL2(Z).
Recall that the j-function defines a holomorphic bijection Y (1) ∼−→ C.
If we put j(∞) :=∞ then it defines a meromorphic bijection X(1) ∼−→ S := P1(C)
that has only a simple pole at ∞ (if we put j(ρ) := 0, j(i) := 1728 this determines j).

Theorem
Every modular function for Γ(1) is a rational function of j(τ), that is, C(Γ(1)) = C(j).
Proof: We have C(j) ⊆ C(Γ(1)) and the lemma below gives the reverse inclusion.

Lemma
Every meromorphic f : S → C is a rational function.

Corollary
The C[j] is precisely the subring of C(j) = C(Γ(1)) that is holomorphic on H.



Modular functions for Γ0(N)

Theorem
Let Γ be a congruence subgroup. [C(Γ) : C(Γ(1))] has degree at most [Γ(1) : Γ].
Proof: To the board!

Remark
If −I ∈ Γ then in fact [C(Γ(1)) : C(Γ)] = [Γ(1) : Γ] (we will prove this for Γ0(N)).

Theorem
The function jN (τ) := j(Nτ) is a modular function for Γ0(N).
Proof: To the board!

Theorem
C(Γ0(N)) = C(j)(jN ) and [C(Γ0(N)) : C(Γ(1))] = [Γ(1) : Γ0(N)].



The modular polynomial ΦN ∈ C[X, Y ]

Definition
The modular polynomial ΦN is the minimal polynomial of jN over C(j).

We may write ΦN ∈ C(j)[Y ] as

ΦN (Y ) =
n∏
i=1

(Y − jN (γiτ)),

where {γ1, . . . γn} is a set of right coset representatives for Γ0(N).

The coefficients of ΦN (Y ) are symmetric polynomials in jN (γiτ), so Γ(1)-invariant,
and holomorphic on H, hence lie in C[j]. Thus ΦN ∈ C[j, Y ].

If we replace every occurrence of j in ΦN with a new variable X we obtain a
polynomial in C[X,Y ] that we write as ΦN (X,Y ).



The modular polynomial ΦN ∈ Z[X, Y ]

Lemma
Let S =

( 0 −1
1 0

)
and T =

( 1 1
0 1
)
. For N prime the right cosets of Γ0(N) in Γ(1) are{

Γ0(N)
}
∪
{

Γ0(N)ST k : 0 ≤ k < N
}
.

Theorem
ΦN ∈ Z[X,Y ].
Proof: To the board!

Lemma (Hasse q-expansion principle)

Let f(τ) be a modular function for Γ(1) that is holomorphic on H and whose
q-expansion has coefficients that lie in an additive subgroup A of C.
Then f(τ) = P (j(τ)), for some polynomial P ∈ A[X].


