18.783 Elliptic Curves Lecture 13

Andrew Sutherland

March 14, 2022

Ordinary and supersingular elliptic curves

Definition

Let E/k be an elliptic curve of positive characteristic p. If $E[p] \simeq \mathbb{Z}/p\mathbb{Z}$ then E is ordinary, otherwise E is supersingular.

We proved the following in previous lectures:

- Any isogeny α can be decomposed as $\alpha = \alpha_{sep} \circ \pi^n$, where α_{sep} is separable.
- $\deg_s \alpha := \deg \alpha_{\operatorname{sep}}, \deg_i \alpha := p^n$, and $\deg \alpha = (\deg_s \alpha)(\deg_i \alpha)$.
- We have $\# \ker \alpha = \deg_s \alpha$ (so E is supersingular if and only if $\deg_s[p] = 1$).
- We have $\deg(\alpha \circ \beta) = (\deg \alpha)(\deg \beta)$, and similarly for \deg_s and \deg_i .
- A sum of inseparable isogenies is inseparable.
- The sum of a separable and an inseparable isogeny is separable.
- The multiplication-by- $n \mod [n]$ is inseparable if and only if p|n.
- Supersingularity is invariant under base change: $E[p] = \{Q \in E(\bar{k}) : pQ = 0\}.$

Supersingularity is an isogeny invariant

Theorem

Let $\phi: E_1 \to E_2$ be an isogeny of elliptic curves. Then E_1 is supersingular if and only if E_2 is supersingular (and E_1 is ordinary if and only if E_2 is ordinary).

Proof: Let $p_1 \in \text{End}(E_1)$ and $p_2 \in \text{End}(E_2)$ denote multiplication-by-p maps. We have $p_2 \circ \phi = \phi + \cdots + \phi = \phi \circ p_1$, thus

$$p_2 \circ \phi = \phi \circ p_1$$
$$\deg_s(p_2 \circ \phi) = \deg_s(\phi \circ p_1)$$
$$\deg_s(p_2) \deg_s(\phi) = \deg_s(\phi) \deg_s(p_1)$$
$$\deg_s(p_2) = \deg_s(p_1).$$

The elliptic curve E_i is supersingular if and only if $\deg_s(p_i) = 1$; the theorem follows.

Criteria for supersingularity

Assume p > 3, so that $E: y^2 = x^3 + Ax + B$, and $E^{(p)}: y^2 = x^3 + A^p x + B^p$, so that $\pi: E \to E^{(p)}$. We also define $E^{(q)}: y^2 = x^3 + A^q x + B^q$ for any $q = p^n$. Note that $[p] = \pi \hat{\pi}$, so E is supersingular if and only if $\hat{\pi}: E^{(p)} \to E$ is inseparable.

Theorem

An elliptic curve E/\mathbb{F}_q with $q = p^n$ is supersingular if and only if $\operatorname{tr} \pi_E \equiv 0 \mod p$.

Proof: If *E* is supersingular then $[p] = \pi \hat{\pi}$ is purely inseparable, in which case $\hat{\pi}$ is inseparable, as are $\hat{\pi}^n = \hat{\pi}^n = \hat{\pi}_E$ and $\pi_E = \pi^n$.

Their sum $[\operatorname{tr} \pi_E] = \pi_E + \hat{\pi}_E$ is inseparable, so p must divide $\operatorname{tr} \pi_E$. Equivalently, $\operatorname{tr} \pi_E \equiv 0 \mod p$.

Conversely, if $\operatorname{tr} \pi_E \equiv 0 \mod p$, then $[\operatorname{tr} \pi_E]$ is inseparable, as is $\hat{\pi}_E = [\operatorname{tr} \pi_E] - \pi_E$. This means that $\hat{\pi}^n$ and $\hat{\pi}$ are inseparable which implies that E is supersingular.

Trace zero elliptic curves are supersingular

Corollary

Let E/\mathbb{F}_p be an elliptic curve over a field of prime order p > 3. Then E is supersingular if and only if $\operatorname{tr} \pi_E = 0$, equivalently, $\#E(\mathbb{F}_p) = p + 1$.

Proof: By Hasse's theorem, $|\operatorname{tr} \pi_E| \leq 2\sqrt{p}$, and $2\sqrt{p} < p$ for p > 3.

Warning: The corollary does not hold for p = 2, 3.

The corollary should convince you that supersingular elliptic curves are rare. Of the $4\sqrt{p}$ possible Frobenius traces for E/\mathbb{F}_p , only one yields supersingular curves.

Endomorphism algebras of ordinary elliptic curves

Theorem

Let *E* be an elliptic curve over a finite field \mathbb{F}_q and suppose $\pi_E \notin \mathbb{Z}$. Then $\operatorname{End}^0(E) = \mathbb{Q}(\pi_E) \simeq \mathbb{Q}(\sqrt{D})$ is an imaginary quadratic field, $D = (\operatorname{tr} \pi_E)^2 - 4q$. This applies in particular whenever *q* is prime, and also whenever *E* is ordinary.

Proof: To the blackboard!

Corollary

Let *E* be an elliptic curve over \mathbb{F}_q with $q = p^n$. If *n* is odd or *E* is ordinary, then End⁰(*E*) = $\mathbb{Q}(\pi_E) \simeq \mathbb{Q}(\sqrt{D})$ is an imaginary quadratic field with $D = (\operatorname{tr} \pi_E)^2 - 4q$.

Proof: If $\pi_E \in \mathbb{Z}$ then $D = (\operatorname{tr} \pi_E)^2 - 4 \operatorname{deg} \pi_E = 0$ and $2\sqrt{q} = \pm \operatorname{tr} \pi_E \in \mathbb{Z}$, which is possible only when q is a square and $\operatorname{tr} \pi_E$ is a multiple of p. But then n is even and E is supersingular.

Endomorphism algebras of ordinary elliptic curves

If E/\mathbb{F}_q is an ordinary elliptic curve, or more generally, whenever $\pi_E \notin \mathbb{Z}$, the subring $\mathbb{Z}[\pi_E]$ of $\operatorname{End}(E)$ generated by π_E is a lattice of rank 2.

It follows that $\mathbb{Z}[\pi_E]$ is an order in the imaginary quadratic field $K := \operatorname{End}^0(E)$, and is therefore contained in the maximal order \mathcal{O}_K (the ring of integers of K).

Definition

The conductor of an order \mathcal{O} in a number field K is the positive integer $[\mathcal{O}_K : \mathcal{O}]$.

Theorem

Let E/\mathbb{F}_q be an elliptic curve for which $\operatorname{End}^0(E)$ is an imaginary quadratic field K with ring of integers \mathcal{O}_K . Then

 $\mathbb{Z}[\pi_E] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_K,$

and the conductor of $\operatorname{End}(E)$ divides $[\mathcal{O}_K : \mathbb{Z}[\pi_E]]$.

The *j*-invariant of an elliptic curve

Definition

The *j*-invariant of the elliptic curve $E: y^2 = x^3 + Ax + B$ is

$$j(E) := j(A, B) := 1728 \frac{4A^3}{4A^3 + 27B^2}.$$

Note that $\Delta(E) = -16(4A^3 - +27B^2) \neq 0.$

Theorem

For every $j_0 \in k$ there is an elliptic curve E/k with *j*-invariant $j(E) = j_0$. **Proof**: We assume char $(k) \neq 2, 3$. If $j_0 = 0$ take A = 0, B = 1 and if $j_0 = 1728$ take A = 1, B = 0. Otherwise, let $A = 3j_0(1728 - j_0)$ and $B = 2j_0(1728 - j_0)^2$ so that

$$j(A,B) = 1728 \frac{4A^3}{4A^3 + 27B^2} = 1728 \frac{4 \cdot 3^3 j_0^3 (1728 - j_0)^3}{4 \cdot 3^3 j_0^3 (1728 - j_0)^3 + 27 \cdot 2^2 j_0^2 (1728 - j_0)^4} = j_0.$$

The *j*-invariant is a \bar{k} -isomorphism invariant

Theorem

Elliptic curves $E: y^2 = x^3 + Ax + B$ and $E': y^2 = x^3 + A'x + B'$ defined over k are isomorphic (over k) if and only if $A' = \mu^4 A$ and $B' = \mu^6 B$, for some $\mu \in k^{\times}$. **Proof**: To the blackboard!

Theorem

Let E and E' be elliptic curves over k. Then $E_{\bar{k}} \simeq E'_{\bar{k}}$ if and only if j(E) = j(E'). If j(E) = j(E') and $char(k) \neq 2, 3$ then there is a field extension K/k of degree at most 6, 4, or 2, for j(E) = 0, j(E) = 1728, or $j(E) \neq 0, 1728$, such that $E_K \simeq E'_K$. **Proof**: See notes.

The first statement is true in characteristic 2 and 3, but the second statement is not; one may need to take K/k of degree up to 12 when k has characteristic 2 or 3.

Supersingular elliptic curves

Theorem

Let *E* be a supersingular elliptic curve over a field *k* of characteristic p > 0. Then j(E) lies in \mathbb{F}_{p^2} (and possibly in \mathbb{F}_p).

Proof: *E* is supersingular, so $\hat{\pi}$ is purely inseparable and $\hat{\pi} = \hat{\pi}_{sep}\pi$ with $\deg \hat{\pi}_{sep} = 1$. We thus have $[p] = \hat{\pi}\pi = \hat{\pi}_{sep}\pi^2$, so $\hat{\pi}_{sep}$ is an isomorphism $E^{(p^2)} \to E$. By our theorem on *j*-invariants

$$j(E) = j(E^{(p^2)}) = j(A^{p^2}, B^{p^2}) = j(A, B)^{p^2} = j(E)^{p^2}.$$

Thus j(E) is fixed by the p^2 -power Frobenius automorphism $\sigma \colon x \mapsto x^{p^2}$ of k.

It follows that j(E) lies in the subfield of k fixed by σ , which is either \mathbb{F}_{p^2} or \mathbb{F}_p , depending on whether k contains a quadratic extension of its prime field or not. In either case, j(E) lies in \mathbb{F}_{p^2} .

Endomorphism algebras of supersingular elliptic curves

Let E/k be an elliptic curve over a field k of characteristic p > 0.

Theorem

If E is supersingular if and only if $\operatorname{End}^0(E_{\bar{k}})$ is a quaternion algebra. **Proof**: To the blackboard!

Corollary

Let E be an elliptic curve over a finite field \mathbb{F}_q of characteristic p. Either E is supersingular, $\operatorname{tr} \pi_E \equiv 0 \mod p$, and $\operatorname{End}^0(E_{\overline{\mathbb{F}}_q})$ is a quaternion algebra, or E is ordinary, $\operatorname{tr} \pi_E \not\equiv 0 \mod p$, and $\operatorname{End}^0(E_{\overline{\mathbb{F}}_q})$ is an imaginary quadratic field.

When E/\mathbb{F}_q is ordinary we always have $\operatorname{End}^0(E) = \operatorname{End}^0(E_{\overline{\mathbb{F}}_q})$.

But when E is supersingular this need not hold. In particular, if $q = p^n$ with n odd then $\operatorname{End}^0(E)$ is an imaginary quadratic field, while $\operatorname{End}^0(E_{\overline{\mathbb{F}}_q})$ is a quaternion algebra.