18.783 Elliptic Curves Lecture 13

Andrew Sutherland

March 14, 2022

Ordinary and supersingular elliptic curves

Definition

Let E / k be an elliptic curve of positive characteristic p.
If $E[p] \simeq \mathbb{Z} / p \mathbb{Z}$ then E is ordinary, otherwise E is supersingular.
We proved the following in previous lectures:

- Any isogeny α can be decomposed as $\alpha=\alpha_{\text {sep }} \circ \pi^{n}$, where $\alpha_{\text {sep }}$ is separable.
- $\operatorname{deg}_{s} \alpha:=\operatorname{deg} \alpha_{\text {sep }}, \operatorname{deg}_{i} \alpha:=p^{n}$, and $\operatorname{deg} \alpha=\left(\operatorname{deg}_{s} \alpha\right)\left(\operatorname{deg}_{i} \alpha\right)$.
- We have $\# \operatorname{ker} \alpha=\operatorname{deg}_{s} \alpha$ (so E is supersingular if and only if $\operatorname{deg}_{s}[p]=1$).
- We have $\operatorname{deg}(\alpha \circ \beta)=(\operatorname{deg} \alpha)(\operatorname{deg} \beta)$, and similarly for deg_{s} and deg_{i}.
- A sum of inseparable isogenies is inseparable.
- The sum of a separable and an inseparable isogeny is separable.
- The multiplication-by- n map $[n]$ is inseparable if and only if $p \mid n$.
- Supersingularity is invariant under base change: $E[p]=\{Q \in E(\bar{k}): p Q=0\}$.

Supersingularity is an isogeny invariant

Theorem

Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny of elliptic curves. Then E_{1} is supersingular if and only if E_{2} is supersingular (and E_{1} is ordinary if and only if E_{2} is ordinary).
Proof: Let $p_{1} \in \operatorname{End}\left(E_{1}\right)$ and $p_{2} \in \operatorname{End}\left(E_{2}\right)$ denote multiplication-by- p maps.
We have $p_{2} \circ \phi=\phi+\cdots+\phi=\phi \circ p_{1}$, thus

$$
\begin{aligned}
p_{2} \circ \phi & =\phi \circ p_{1} \\
\operatorname{deg}_{s}\left(p_{2} \circ \phi\right) & =\operatorname{deg}_{s}\left(\phi \circ p_{1}\right) \\
\operatorname{deg}_{s}\left(p_{2}\right) \operatorname{deg}_{s}(\phi) & =\operatorname{deg}_{s}(\phi) \operatorname{deg}_{s}\left(p_{1}\right) \\
\operatorname{deg}_{s}\left(p_{2}\right) & =\operatorname{deg}_{s}\left(p_{1}\right) .
\end{aligned}
$$

The elliptic curve E_{i} is supersingular if and only if $\operatorname{deg}_{s}\left(p_{i}\right)=1$; the theorem follows.

Criteria for supersingularity

Assume $p>3$, so that $E: y^{2}=x^{3}+A x+B$, and $E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p}$, so that $\pi: E \rightarrow E^{(p)}$. We also define $E^{(q)}: y^{2}=x^{3}+A^{q} x+B^{q}$ for any $q=p^{n}$.
Note that $[p]=\pi \hat{\pi}$, so E is supersingular if and only if $\hat{\pi}: E^{(p)} \rightarrow E$ is inseparable.

Theorem

An elliptic curve E / \mathbb{F}_{q} with $q=p^{n}$ is supersingular if and only if $\operatorname{tr} \pi_{E} \equiv 0 \bmod p$.
Proof: If E is supersingular then $[p]=\pi \hat{\pi}$ is purely inseparable, in which case $\hat{\pi}$ is inseparable, as are $\hat{\pi}^{n}=\widehat{\pi^{n}}=\hat{\pi}_{E}$ and $\pi_{E}=\pi^{n}$.

Their sum $\left[\operatorname{tr} \pi_{E}\right]=\pi_{E}+\hat{\pi}_{E}$ is inseparable, so p must divide $\operatorname{tr} \pi_{E}$.
Equivalently, $\operatorname{tr} \pi_{E} \equiv 0 \bmod p$.
Conversely, if $\operatorname{tr} \pi_{E} \equiv 0 \bmod p$, then $\left[\operatorname{tr} \pi_{E}\right]$ is inseparable, as is $\hat{\pi}_{E}=\left[\operatorname{tr} \pi_{E}\right]-\pi_{E}$. This means that $\hat{\pi}^{n}$ and $\hat{\pi}$ are inseparable which implies that E is supersingular.

Trace zero elliptic curves are supersingular

Corollary

Let E / \mathbb{F}_{p} be an elliptic curve over a field of prime order $p>3$.
Then E is supersingular if and only if $\operatorname{tr} \pi_{E}=0$, equivalently, $\# E\left(\mathbb{F}_{p}\right)=p+1$.
Proof: By Hasse's theorem, $\left|\operatorname{tr} \pi_{E}\right| \leq 2 \sqrt{p}$, and $2 \sqrt{p}<p$ for $p>3$.
Warning: The corollary does not hold for $p=2,3$.

The corollary should convince you that supersingular elliptic curves are rare.
Of the $4 \sqrt{p}$ possible Frobenius traces for E / \mathbb{F}_{p}, only one yields supersingular curves.

Endomorphism algebras of ordinary elliptic curves

Theorem

Let E be an elliptic curve over a finite field \mathbb{F}_{q} and suppose $\pi_{E} \notin \mathbb{Z}$.
Then $\operatorname{End}^{0}(E)=\mathbb{Q}\left(\pi_{E}\right) \simeq \mathbb{Q}(\sqrt{D})$ is an imaginary quadratic field, $D=\left(\operatorname{tr} \pi_{E}\right)^{2}-4 q$.
This applies in particular whenever q is prime, and also whenever E is ordinary.
Proof: To the blackboard!

Corollary

Let E be an elliptic curve over \mathbb{F}_{q} with $q=p^{n}$. If n is odd or E is ordinary, then $\operatorname{End}^{0}(E)=\mathbb{Q}\left(\pi_{E}\right) \simeq \mathbb{Q}(\sqrt{D})$ is an imaginary quadratic field with $D=\left(\operatorname{tr} \pi_{E}\right)^{2}-4 q$.

Proof: If $\pi_{E} \in \mathbb{Z}$ then $D=\left(\operatorname{tr} \pi_{E}\right)^{2}-4 \operatorname{deg} \pi_{E}=0$ and $2 \sqrt{q}= \pm \operatorname{tr} \pi_{E} \in \mathbb{Z}$, which is possible only when q is a square and $\operatorname{tr} \pi_{E}$ is a multiple of p. But then n is even and E is supersingular.

Endomorphism algebras of ordinary elliptic curves

If E / \mathbb{F}_{q} is an ordinary elliptic curve, or more generally, whenever $\pi_{E} \notin \mathbb{Z}$, the subring $\mathbb{Z}\left[\pi_{E}\right]$ of $\operatorname{End}(E)$ generated by π_{E} is a lattice of rank 2.
It follows that $\mathbb{Z}\left[\pi_{E}\right]$ is an order in the imaginary quadratic field $K:=\operatorname{End}^{0}(E)$, and is therefore contained in the maximal order \mathcal{O}_{K} (the ring of integers of K).

Definition

The conductor of an order \mathcal{O} in a number field K is the positive integer $\left[\mathcal{O}_{K}: \mathcal{O}\right]$.

Theorem

Let E / \mathbb{F}_{q} be an elliptic curve for which $\operatorname{End}^{0}(E)$ is an imaginary quadratic field K with ring of integers \mathcal{O}_{K}. Then

$$
\mathbb{Z}\left[\pi_{E}\right] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_{K}
$$

and the conductor of $\operatorname{End}(E)$ divides $\left[\mathcal{O}_{K}: \mathbb{Z}\left[\pi_{E}\right]\right]$.

The j-invariant of an elliptic curve

Definition

The j-invariant of the elliptic curve $E: y^{2}=x^{3}+A x+B$ is

$$
j(E):=j(A, B):=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

Note that $\Delta(E)=-16\left(4 A^{3}-+27 B^{2}\right) \neq 0$.

Theorem

For every $j_{0} \in k$ there is an elliptic curve E / k with j-invariant $j(E)=j_{0}$.
Proof: We assume char $(k) \neq 2,3$. If $j_{0}=0$ take $A=0, B=1$ and if $j_{0}=1728$ take $A=1, B=0$. Otherwise, let $A=3 j_{0}\left(1728-j_{0}\right)$ and $B=2 j_{0}\left(1728-j_{0}\right)^{2}$ so that

$$
j(A, B)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}=1728 \frac{4 \cdot 3^{3} j_{0}^{3}\left(1728-j_{0}\right)^{3}}{4 \cdot 3^{3} j_{0}^{3}\left(1728-j_{0}\right)^{3}+27 \cdot 2^{2} j_{0}^{2}\left(1728-j_{0}\right)^{4}}=j_{0}
$$

The j-invariant is a \bar{k}-isomorphism invariant

Theorem

Elliptic curves $E: y^{2}=x^{3}+A x+B$ and $E^{\prime}: y^{2}=x^{3}+A^{\prime} x+B^{\prime}$ defined over k are isomorphic (over k) if and only if $A^{\prime}=\mu^{4} A$ and $B^{\prime}=\mu^{6} B$, for some $\mu \in k^{\times}$.
Proof: To the blackboard!

Theorem

Let E and E^{\prime} be elliptic curves over k. Then $E_{\bar{k}} \simeq E_{\bar{k}}^{\prime}$ if and only if $j(E)=j\left(E^{\prime}\right)$. If $j(E)=j\left(E^{\prime}\right)$ and char $(k) \neq 2,3$ then there is a field extension K / k of degree at most 6,4 , or 2 , for $j(E)=0, j(E)=1728$, or $j(E) \neq 0,1728$, such that $E_{K} \simeq E_{K}^{\prime}$.
Proof: See notes.
The first statement is true in characteristic 2 and 3 , but the second statement is not; one may need to take K / k of degree up to 12 when k has characteristic 2 or 3 .

Supersingular elliptic curves

Theorem

Let E be a supersingular elliptic curve over a field k of characteristic $p>0$. Then $j(E)$ lies in $\mathbb{F}_{p^{2}}$ (and possibly in \mathbb{F}_{p}).
Proof: E is supersingular, so $\hat{\pi}$ is purely inseparable and $\hat{\pi}=\hat{\pi}_{\text {sep }} \pi$ with $\operatorname{deg} \hat{\pi}_{\text {sep }}=1$. We thus have $[p]=\hat{\pi} \pi=\hat{\pi}_{\text {sep }} \pi^{2}$, so $\hat{\pi}_{\text {sep }}$ is an isomorphism $E^{\left(p^{2}\right)} \rightarrow E$. By our theorem on j-invariants

$$
j(E)=j\left(E^{\left(p^{2}\right)}\right)=j\left(A^{p^{2}}, B^{p^{2}}\right)=j(A, B)^{p^{2}}=j(E)^{p^{2}} .
$$

Thus $j(E)$ is fixed by the p^{2}-power Frobenius automorphism $\sigma: x \mapsto x^{p^{2}}$ of k.
It follows that $j(E)$ lies in the subfield of k fixed by σ, which is either $\mathbb{F}_{p^{2}}$ or \mathbb{F}_{p}, depending on whether k contains a quadratic extension of its prime field or not. In either case, $j(E)$ lies in $\mathbb{F}_{p^{2}}$.

Endomorphism algebras of supersingular elliptic curves

Let E / k be an elliptic curve over a field k of characteristic $p>0$.

Theorem

If E is supersingular if and only if $\operatorname{End}^{0}\left(E_{\bar{k}}\right)$ is a quaternion algebra.
Proof: To the blackboard!

Corollary

Let E be an elliptic curve over a finite field \mathbb{F}_{q} of characteristic p. Either E is supersingular, $\operatorname{tr} \pi_{E} \equiv 0 \bmod p$, and $\operatorname{End}^{0}\left(E_{\overline{\mathbb{F}}_{q}}\right)$ is a quaternion algebra, or E is ordinary, $\operatorname{tr} \pi_{E} \not \equiv 0 \bmod p$, and $\operatorname{End}^{0}\left(E_{\overline{\mathbb{F}}_{q}}\right)$ is an imaginary quadratic field.

When E / \mathbb{F}_{q} is ordinary we always have $\operatorname{End}^{0}(E)=\operatorname{End}^{0}\left(E_{\overline{\mathbb{F}}_{q}}\right)$.
But when E is supersingular this need not hold. In particular, if $q=p^{n}$ with n odd then $\operatorname{End}^{0}(E)$ is an imaginary quadratic field, while $\operatorname{End}^{0}\left(E_{\overline{\mathbb{F}}_{q}}\right)$ is a quaternion algebra.

