The endomorphism ring of an elliptic curve E

Recall that the endomorphism ring $\text{End}(E)$ is the ring of morphisms $E \to E$ in which addition is defined pointwise and we multiply via composition.

- $\text{End}(E)$ has no zero divisors;
- $\deg: \text{End}(E) \to \mathbb{Z}_{\geq 0}$ defined by $\alpha \mapsto \deg \alpha$ is multiplicative (with $\deg 0 := 0$);
- $\deg n = n^2$ for all $n \in \mathbb{Z} \subseteq \text{End}(E)$;
- $\hat{\alpha} \in \text{End}(E)$ with $\alpha \hat{\alpha} = \hat{\alpha} \alpha = \deg \alpha = \deg \hat{\alpha}$, and $\hat{\alpha} = \alpha$;
- $\hat{n} = n$ for all $n \in \mathbb{Z} \subseteq \text{End}(E)$;
- $\hat{\alpha + \beta} = \hat{\alpha} + \hat{\beta}$ and $\hat{\alpha \beta} = \hat{\beta} \hat{\alpha}$ for all $\alpha, \beta \in \text{End}(E)$;
- $\text{tr} \alpha := \alpha + \hat{\alpha}$ satisfies $\text{tr} \alpha = \text{tr} \hat{\alpha}$ and $\text{tr}(\alpha + \beta) = \text{tr} \alpha + \text{tr} \beta$;
- $\text{tr} \alpha = \deg \alpha + 1 - \deg(\alpha - 1) \in \mathbb{Z}$ for all $\alpha \in \text{End}(E)$;
- α and $\hat{\alpha}$ are the roots of the characteristic equation $x^2 - (\text{tr} \alpha)x + \deg \alpha \in \mathbb{Z}[x]$.
Tensor products of algebras

Definition

For a commutative ring R an (associative unital) R-algebra A is a ring equipped with a homomorphism $R \to A$ whose image lies in the center. Every ring is a \mathbb{Z}-algebra.

Definition

The tensor product of two R-algebras A and B is the R-algebra $A \otimes_R B$ generated by the formal symbols $\alpha \otimes \beta$ with $\alpha \in A$, $\beta \in B$, subject to the relations

$$(\alpha_1 + \alpha_2) \otimes \beta = \alpha_1 \otimes \beta + \alpha_2 \otimes \beta, \quad \alpha \otimes (\beta_1 + \beta_2) = \alpha \otimes \beta_1 + \alpha \otimes \beta_2$$

$$r \alpha \otimes \beta = \alpha \otimes r \beta = r(\alpha \otimes \beta), \quad (\alpha_1 \otimes \beta_1)(\alpha_2 \otimes \beta_2) = \alpha_1 \alpha_2 \otimes \beta_1 \beta_2$$

It comes with an R-linear map $\varphi: A \times B \to A \otimes_R B$ defined by $(\alpha, \beta) \mapsto \alpha \otimes \beta$ with the universal property that every R-bilinear map of R-algebras $\psi: A \times B \to C$ factors uniquely through $A \otimes_R B$: there is a unique $\psi': A \otimes_R B \to C$ such that $\psi = \psi' \circ \varphi$.
Base change

Definition

If \(R \rightarrow S \) is a homomorphism of commutative rings, then \(S \) as an \(R \)-algebra.
If \(A \) is an \(R \)-algebra, the \(S \)-algebra \(S \rightarrow A \otimes_R S \) is the base change of \(A \) to \(S \).
(the map \(S \rightarrow A \otimes_R S \) is defined by \(s \mapsto 1 \otimes s \)).

Lemma

If \(R \) is an integral domain with fraction field \(S \) then every element of \(A \otimes_R S \) can be written as a pure tensor \(\alpha \otimes s \).

Example

The ring of integers \(\mathcal{O}_K \) of a number field \(K/\mathbb{Q} \) is a \(\mathbb{Z} \)-algebra of rank \(n := [K : \mathbb{Q}] \).
The base change \(\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Q} \) is a \(\mathbb{Q} \)-algebra of dimension \(n \) isomorphic to \(K \).
The endomorphism algebra of an elliptic curve

Definition

The **endomorphism algebra** of an elliptic curve E is the \mathbb{Q}-algebra

$$\text{End}^0(E) := \text{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Its elements can all be written in the form $r\alpha$ with $r \in \mathbb{Q}$ and $\alpha \in \text{End}(E)$. We extend the map $\alpha \to \hat{\alpha}$ to $\text{End}^0(E)$ by defining $r\hat{\alpha} = \hat{r}\alpha$. We then have $\hat{\hat{\alpha}} = \alpha$, $\hat{\alpha\beta} = \hat{\beta}\hat{\alpha}$ and $\hat{\alpha + \beta} = \hat{\alpha} + \hat{\beta}$ for $\alpha, \beta \in \text{End}^0(E)$, and $\hat{r} = r$ for $r \in \mathbb{Q}$.

Definition

An **anti-homomorphism** $\varphi : R \to S$ of rings is a homomorphism of additive groups with $\varphi(1_R) = 1_S$ and $\varphi(\alpha\beta) = \varphi(\beta)\varphi(\alpha)$ for all $\alpha, \beta \in R$. An **involution** (or anti-involution) is an anti-homomorphism $\varphi : R \to R$ that is its own inverse: $\varphi \circ \varphi$ is the identity map.

The involution $\alpha \mapsto \hat{\alpha}$ of $\text{End}(E)$ is called the **Rosati involution**.
Norm and trace

Definition

For $\alpha \in \text{End}^0(E)$, we define the (reduced) norm $N\alpha := \alpha \hat{\alpha}$ and trace $T\alpha := \alpha + \hat{\alpha}$.

We have $N\hat{\alpha} = N\alpha$, $T\hat{\alpha} = T\alpha$, $N(\alpha\beta) = N\alpha N\beta$, $T(\alpha + \beta) = T\alpha + T\beta$, $T(r\alpha) = rT\alpha$,

and we note that $T\alpha = \alpha + \hat{\alpha} = 1 + \alpha\hat{\alpha} - (1 - \alpha)(1 - \hat{\alpha}) = 1 + N\alpha - N(1 - \alpha) \in \mathbb{Q}$.

Lemma

*For all $\alpha \in \text{End}^0(E)$ we have $N\alpha \in \mathbb{Q}_{\geq 0}$ with $N\alpha = 0$ if and only if $\alpha = 0$.***

Proof: If $\alpha = r\phi$ then $N\alpha = \alpha\hat{\alpha} = r\phi r\hat{\phi} = r^2 \deg \phi \geq 0$ with equality only if $r\phi = 0$.

Corollary

*Every nonzero $\alpha \in \text{End}^0(E)$ has a multiplicative inverse α^{-1}.***

Proof: If $\beta = \hat{\alpha}/N\alpha$, then $\alpha\beta = N\alpha/N\alpha = 1$ and $\beta\alpha = N\hat{\alpha}/N\alpha = 1$, so $\beta = \alpha^{-1}$.
Lemma

An element $\alpha \in \text{End}^0(E)$ is fixed by the Rosati involution if and only if $\alpha \in \mathbb{Q}$.

Proof: If $\hat{\alpha} = \alpha$ then $T\alpha = \alpha + \hat{\alpha} = 2\alpha$ and $\alpha = T\alpha/2 \in \mathbb{Q}$.

Lemma

Let $\alpha \in \text{End}^0(E)$. Then α and $\hat{\alpha}$ are roots of the polynomial

$$x^2 - (T\alpha)x + N\alpha \in \mathbb{Q}[x]$$

Proof: $0 = (\alpha - \alpha)(\hat{\alpha} - \hat{\alpha}) = \alpha^2 - \alpha(\alpha + \hat{\alpha} + \alpha\hat{\alpha}) = \alpha^2 - (T\alpha)\alpha + N\alpha$.

Corollary

For any nonzero $\alpha \in \text{End}^0(E)$, if $T\alpha = 0$ then $\alpha^2 = -N\alpha < 0$ and $\alpha \notin \mathbb{Q}$.
Quaternion algebras

Definition

A quaternion algebra H over a field k is a k-algebra with a basis $\{1, \alpha, \beta, \alpha\beta\}$ satisfying $\alpha^2, \beta^2 \in k^\times$ and $\alpha\beta = -\beta\alpha$. We distinguish quaternion algebras as **non-split** or **split** depending on whether they are division rings or not.

Example

Non-split: the \mathbb{R}-algebra with basis $\{1, i, j, ij\}$ satisfying $i^2 = j^2 = -1$ and $ij = -ji$.

Split: the ring of 2×2 matrices over k with $\alpha^2 = \beta^2 = 1$, where

$$
\alpha := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \beta := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \alpha\beta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \beta\alpha = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
$$
Endomorphism algebra classification theorem

Theorem

Let E/k be an elliptic curve. Then $\text{End}^0(E)$ is isomorphic to one of the following:

- the field of rational numbers \mathbb{Q};
- an imaginary quadratic field $\mathbb{Q}(\alpha)$ with $\alpha^2 < 0$;
- a quaternion algebra $\mathbb{Q}(\alpha, \beta)$ with $\alpha^2, \beta^2 < 0$.

Proof: To the blackboard!

Definition

An elliptic curve with $\text{End}^0(E) \neq \mathbb{Q}$ is said to have **complex multiplication**.
Orders in \mathbb{Q}-algebras

Definition

Let K be a \mathbb{Q}-algebra of finite dimension r as a \mathbb{Q}-vector space. A subring \mathcal{O} of K is an order in K if it is a free \mathbb{Z}-module of rank r. Equivalently, \mathcal{O} is a finitely generated as a \mathbb{Z}-module with $K = \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}$.

Example

\mathbb{Z} is an order in \mathbb{Q}, but $2\mathbb{Z}$ and $\{a/2^n : a, n \in \mathbb{Z}\} \subseteq \mathbb{Q}$ are not orders in \mathbb{Q}.

Corollary

The endomorphism ring $\text{End}(E)$ is an order in $\text{End}^0(E)$.

Proof: To the blackboard!
Orders in number fields

Definition

An algebraic number \(\alpha \in \mathbb{C} \) is any root of a polynomial with coefficients in \(\mathbb{Z} \).

An algebraic integer \(\alpha \in \mathbb{C} \) is any root of a monic polynomial with coefficients in \(\mathbb{Z} \).

The algebraic integers form a ring \(\overline{\mathbb{Z}} \).

Definition

A number field \(K \) is a finite extension of \(\mathbb{Q} \). Its ring of integers \(\mathcal{O}_K \) is the ring \(K \cap \overline{\mathbb{Z}} \), which is a free \(\mathbb{Z} \)-module of rank \(\dim_{\mathbb{Q}} K \), hence an order in \(K \). Moreover, it is the unique maximal order in \(K \).

Theorem

Let \(K \) be an imaginary quadratic field with ring of integers \(\mathcal{O}_K \). The orders in \(K \) are precisely the subrings \(\mathbb{Z} + f\mathcal{O}_K \) with \(f \in \mathbb{Z}_{>0} \).

Proof: See notes.