18.783 Elliptic Curves
Lecture 11

Andrew Sutherland

March 7, 2022
Primality proving

• Primality proving is one of the founding problems of computational number theory.
• A factorization cannot be considered complete without a proof of primality.
• Probabilistic factorization algorithms will typically not terminate on prime inputs.
• Elliptic curves play a crucial role in practical primality proving.
• Existing polynomial-time algorithms are not as practical and do not provide a useful certificate of primality.
• Algorithms for primes of specific forms such as Mersenne primes are very efficient but are not applicable in any generality.
• There are very efficient probabilistic algorithms for proving compositeness without providing a factorization, but these do not prove primality.
Using Fermat’s little theorem to prove compositeness

Theorem (Fermat 1640)

If \(N \) is prime then \(a^N \equiv a \mod N \) for all integers \(a \).

Example

The fact that \(2^{91} \equiv 37 \mod 91 \) proves that 91 is not prime (without factoring it).

Example

We have \(2^{341} \equiv 2 \mod 341 \) (which proves nothing), but \(3^{341} \equiv 168 \mod 341 \) proves that 341 is not prime (thus we may need to try different values of \(a \)).

Example

We have \(a^{561} \equiv a \mod 561 \) for every integer \(a \). But 561 = 3 \(\cdot \) 11 \(\cdot \) 17 is not prime!
Carmichael numbers

Definition
A composite $N \in \mathbb{Z}$ such that $a^N \equiv a \mod N$ for all $a \in \mathbb{Z}$ is a Carmichael number.

The sequence of Carmichael numbers begins 561, 1105, 1729, 2821, . . . , and forms sequence A002997 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Statistics on the 20,138,200 Carmichael numbers less than 10^{21} can be found here.

Theorem (Alford-Granville-Pomerance 1994)
The sequence of Carmichael numbers is infinite.

There are thus infinitely many composite integers that will pass any primality test based on Fermat’s little theorem.
A better test for compositeness

Recall the Euler function $\phi(N) := \#(\mathbb{Z}/N\mathbb{Z})^\times$.

Theorem

A positive integer N is prime if and only if $\phi(N) = N - 1$.

Proof: Every nonzero residue class in $\mathbb{Z}/N\mathbb{Z}$ is invertible if and only if N is prime.

Lemma

Let $p = 2^s t + 1$ be prime with t odd and suppose $a \in \mathbb{Z}$ is not divisible by p.

Exactly one of the following holds:

(i) $a^t \equiv 1 \mod p$.

(ii) $a^{2^i t} \equiv -1 \mod p$ for some $0 \leq i < s$.

Proof: To the blackboard!
A witness for compositeness

Definition

Let \(N = 2^t s + 1 \) with \(t \) odd. An integer \(a \not\equiv 0 \mod N \) is a **witness** for \(N \) if

\[
\text{(i) } a^t \not\equiv 1 \mod N \quad \text{and} \quad \text{(ii) } a^{2^i t} \not\equiv -1 \mod N \quad \text{for} \quad 0 \leq i < s.
\]

If \(N \) has a witness \(a \) then \(N \) is composite (and \(a \) is a certificate of this fact).

Theorem (Monier-Rabin 1980)

Let \(N \) be an odd composite integer. A random integer \(a \in [1, N-1] \) is a witness for \(N \) with probability at least 3/4.

Proof: See notes.

If we pick 100 random \(a \in [1, N-1] \) we are nearly certain to find a witness if \(N \) is composite. But if we do not find one we cannot say whether \(N \) is prime or composite.
The Miller-Rabin algorithm

Algorithm

Given an odd integer $N > 1$:

1. Pick a random integer $a \in [1, N - 1]$.
2. Write $N = 2^s t + 1$, with t odd, and compute $b = a^t \mod N$.
 If $b \equiv \pm 1 \mod N$, return **true** (a is not a witness, N could be prime).
3. For i from 1 to $s - 1$:
 3.1 Set $b \leftarrow b^2 \mod N$.
 3.2 If $b \equiv -1 \mod N$, return **true** (a is not a witness, N could be prime).
4. Return **false** (a is a witness, N is definitely not prime).

On prime inputs this algorithm will always output **true**.
On composite inputs it will output **false** with probability at least $3/4$.
The Miller-Rabin algorithm

Example

For $N = 561$ we have $561 = 2^4 \cdot 35 + 1$, so $s = 4$ and $t = 35$, and for $a = 2$ we have

$$2^{35} \equiv 263 \mod 561,$$

which is not $\pm 1 \mod 561$ so we continue and compute

$$263^2 \equiv 166 \mod 561,$$

$$166^2 \equiv 67 \mod 561,$$

$$67^2 \equiv 1 \mod 561.$$

We never hit -1, so $a = 2$ is a witness for $N = 561$ and we return false, since we have proved that 561 is not prime.
How good is the Miller-Rabin test?

The Miller-Rabin test will detect composite inputs with probability at least $\frac{3}{4}$. By running it k times we can amplify this probability to $1 - 2^{-2k}$. But its performance on random composite inputs is much better than this.

Theorem (Damgard-Landrock-Pomerance 1993)

Let N be a random odd integer in $[2^{k-1}, 2^k]$ and a a random integer in $[1, N - 1]$. Then $\Pr[N \text{ is prime} \mid a \text{ is not a witness for } N] \geq 1 - k^2 \cdot 4^{2-\sqrt{k}}$.

Some typical values of k:

- $k = 256 : 1 - k^2 \cdot 4^{2-\sqrt{k}} = 1 - 2^{-12}$,
- $k = 4096 : 1 - k^2 \cdot 4^{2-\sqrt{k}} = 1 - 2^{-100}$.

Note that this applies to just a single test and can also be amplified!
Elliptic curve primality proving

Definition

Let $P = (P_x : P_y : P_z)$ be a point on an elliptic curve E/\mathbb{Q}, with $P_x, P_y, P_z \in \mathbb{Z}$.
For $N \in \mathbb{Z}_{\geq 0}$, if $P_z \equiv 0 \mod N$ then we say that P is zero mod N, and otherwise we say that P is nonzero mod N. If $\gcd(P_z, N) = 1$ then P is strongly nonzero mod N.

If P is strongly nonzero mod N, then P is nonzero mod p for every prime $p | N$.
When N is prime, the notions of nonzero and strongly nonzero coincide.

Theorem (Goldwasser-Kilian 1986)

Let E/\mathbb{Q} be an elliptic curve, and let $M, N > 1$ be integers with $M > (N^{1/4} + 1)^2$ and $N \perp \Delta(E)$, and let $P \in E(\mathbb{Q})$. If MP is zero mod N and $(M/\ell)P$ is strongly nonzero mod N for every prime $\ell | M$ then N is prime.

Proof: To the blackboard!
To apply the Goldwasser-Killian theorem, we need to know the prime factors q of M. In particular, we need to be sure that these q are actually prime! To simplify matters, we restrict to the case that $M = q$ is prime.

Definition

An elliptic curve primality certificate for p is a tuple of integers (p, A, B, x_1, y_1, q), where $P = (x_1 : y_1 : 1)$ is a point on the elliptic curve $E: y^2 = x^3 + Ax + B$ over \mathbb{Q}, the integer $p > 1$ is prime to $\Delta(E)$, and qP is zero mod p with $q > (p^{1/4} + 1)^2$.

Note that $P = (x_1 : y_1 : 1)$ is strongly nonzero mod p, since its z-coordinate is 1. A primality certificate (p, \ldots, q) reduces the question of p's primality to that of q. A chain of such certificates can lead to a q that is small enough for trial division.
Algorithm (Goldwasser-Kilian ECPP)

Given an odd integer p (a candidate prime), and a bound b, with $p > b > 5$, construct a primality certificate (p, A, B, x_1, y_1, q) with $q \leq (\sqrt{p} + 1)^2/2$ or prove p composite.

1. Pick random integers $A, x_0, y_0 \in [0, p - 1]$, and set $B = y_0^2 - x_0^3 - Ax_0$. Repeat until $\gcd(4A^3 + 27B^2, p) = 1$, then define $E: y^2 = x^3 + Ax + B$.

2. Use Schoof’s algorithm to compute $m = \#E(\mathbb{F}_p)$ assuming that p is prime. If anything goes wrong (which it might!), or if $m \not\in \mathcal{H}(p)$, then return composite.

3. Write $m = cq$, where c is b-smooth and q is b-coarse. If $c = 1$ or $q \leq (p^{1/4} + 1)^2$, then go to step 1.

4. (optional) Perform a Miller-Rabin test on q. If it returns false then go to step 1.

5. Compute $P = (P_x : P_y : P_z) = c \cdot (x_0 : y_0 : 1)$ on E, working modulo p. If $\gcd(P_z, p) \neq 1$, go to step 1, else let $x_1 \equiv P_x/P_z \mod p$, $y_1 \equiv P_y/P_z \mod p$.

6. Compute $Q = (Q_x : Q_y : Q_z) = q \cdot (x_1 : y_1 : 1)$ on E, working modulo p. If $Q_z \not\equiv 0 \mod p$ then return composite.

7. If $q > b$, then recursively verify that q is prime using inputs q and b; otherwise, verify that q is prime by trial division. If q is found to be composite, go to step 1.

8. Output the certificate $(p, A, \tilde{B}, x_1, y_1, q)$ such that $y_1^2 = x_1^3 + Ax_1 + \tilde{B}$ (over \mathbb{Z}).
Complexity analysis and subsequent improvements

You will analyze the heuristic complexity of this algorithm assuming that \(m \) is a random integer (in which case it is a polynomial-time Las Vegas algorithm).

Goldwasser-Killian proved this for all but a subexponentially small set of inputs. Adelman-Huang proved this for all inputs by modifying the algorithm. (They "reduce" the problem to proving the primality of a random prime \(p' \approx p^2 \)).

The Goldwasser-Killian algorithm has been superseded by the “fast ECPP” algorithm developed by Atkin and Morain, which uses the theory of complex multiplication to obtain a much better heuristic expected running time: \(\tilde{O}(n^4) \). This algorithm can handle primes with tens of thousands (but not millions) of digits.

The AKS algorithm (as originally proposed) has a deterministic complexity of \(\tilde{O}(n^{10.5}) \). This can be improved to \(\tilde{O}(n^6) \), and there is a randomized version that can be shown to run in \(\tilde{O}(n^4) \) expected time, but it is still much slower than ECPP.