18.783 Elliptic Curves Lecture 6

Andrew Sutherland

March 9, 2021

The *n*-torsion subgroup of an elliptic curve

Theorem (Lecture 5)

The multiplication-by-n map [n] has degree n^2 that is separable if and only if $n \perp p$.

Theorem

Let E/k be an elliptic curve over a field of characteristic p. For each prime ℓ we have

$$E[\ell^e] \simeq \begin{cases} \mathbb{Z}/\ell^e \mathbb{Z} \oplus \mathbb{Z}/\ell^e \mathbb{Z} & \text{if } \ell \neq p, \\ \mathbb{Z}/\ell^e \mathbb{Z} \text{ or } \{0\} & \text{if } \ell = p. \end{cases}$$

When $E[\ell] \simeq \{0\}$ we say that E is supersingular, otherwise E is ordinary.

Corollary

Every finite subgroup of $E(\bar{k})$ can be written as the sum of two (possibly trivial) cyclic groups with at most one of order divisible by p.

The group of homomorphisms between elliptic curves

Let E_1/k and E_2/k be elliptic curves.

Definition

 $\operatorname{Hom}(E_1, E_2)$ is the abelian group of morphisms $\alpha \colon E_1 \to E_2$ under pointwise addition. Note that $\alpha \in \operatorname{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Lemma

Let
$$\alpha, \beta \in \text{Hom}(E_1, E_2)$$
. If $\alpha(P) = \beta(P)$ for all $P \in E_1(\bar{k})$ then $\alpha = \beta$
Proof: $ker(\alpha - \beta) = E_1(\bar{k})$ is infinite so $\alpha - \beta = 0$.

Lemma

For all $n \in \mathbb{Z}$ and $\alpha \in \text{Hom}(E_1, E_2)$ we have $[n] \circ \alpha = n\alpha = \alpha \circ [n]$.

Proof: We have $([-1] \circ \alpha)(P) = -\alpha(P) = \alpha(-P) = (\alpha \circ [-1])(P)$ and $([n] \circ \alpha)(P) = n\alpha(P) = \alpha(P) + \dots + \alpha(P) = \alpha(P + \dots P) = \alpha(nP) = (\alpha \circ [n])(P).$

The cancellation law for isogenies

For $\delta \in \operatorname{Hom}(E_0, E_1)$, $\alpha, \beta \in \operatorname{Hom}(E_1, E_2)$ and $\gamma \in \operatorname{Hom}(E_2, E_3)$ we have

 $(\alpha + \beta) \circ \gamma = \alpha \circ \gamma + \beta \circ \gamma$ and $\delta \circ (\alpha + \beta) = \delta \circ \alpha + \delta \circ \beta$

since these identities hold pointwise.

Lemma

Let $\delta \colon E_0 \to E_1$, $\alpha, \beta \colon E_1 \to E_2$, and $\gamma \colon E_2 \to E_3$ be isogenies. Then

$$\begin{aligned} \delta \circ \alpha &= \delta \circ \beta & \Longrightarrow & \alpha = \beta \\ \alpha \circ \gamma &= \beta \circ \gamma & \Longrightarrow & \alpha = \beta. \end{aligned}$$

Proof: Isogenies are surjective, so $\alpha, \beta, \gamma, \delta$ and their compositions not zero maps. Then $\delta \circ \alpha = \delta \circ \beta \Rightarrow \delta \circ \alpha - \delta \circ \beta = 0 \Rightarrow \delta \circ (\alpha - \beta) = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$ and $\alpha \circ \gamma = \beta \circ \gamma \Rightarrow \alpha \circ \gamma - \beta \gamma = 0 \Rightarrow (\alpha - \beta) \circ \gamma = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$.

The dual isogeny

Definition

Let $\alpha \colon E_1 \to E_2$ be an isogeny of elliptic curves of degree n. The dual isogeny is the unique isogeny $\hat{\alpha}$ for which $\hat{\alpha} \circ \alpha = [n]$. We also define $[\hat{0}] := 0$.

Uniqueness follows from the cancellation law. Existence is nontrivial (see notes).

Lemma

(1) If
$$\hat{\alpha} \circ \alpha = [n]$$
 then $\alpha \circ \hat{\alpha} = [n]$, that is, $\hat{\hat{\alpha}} = \alpha$, and for $n \in \mathbb{Z}$ we have $[\hat{n}] = [n]$.
(2) For any $\alpha, \beta \in \operatorname{Hom}(E_1, E_2)$ we have $\widehat{\alpha + \beta} = \hat{\alpha} + \hat{\beta}$.
(3) For any $\alpha \in \operatorname{Hom}(E_2, E_3)$ and $\beta \in \operatorname{Hom}(E_1, E_2)$ we have $\widehat{\alpha \circ \beta} = \hat{\beta} \circ \hat{\alpha}$.

Proof: (1) $(\alpha \circ \hat{\alpha}) \circ \alpha = \alpha \circ (\hat{\alpha} \circ \alpha) = \alpha \circ [n] = [n] \circ \alpha$, and $[n] \circ [n] = [n^2] = [\operatorname{deg}[n]]$. (2) Deferred to Lecture 23. (3) $(\hat{\beta} \circ \hat{\alpha}) \circ (\alpha \circ \beta) = \hat{\beta} \circ [\operatorname{deg} \alpha] \circ \beta = [\operatorname{deg} \alpha] \hat{\beta} \circ \beta = [\operatorname{deg} \alpha] \circ [\operatorname{deg} \beta] = [\operatorname{deg}(\alpha \circ \beta)]$.

The endomorphism ring of an elliptic curve

Definition

 $\operatorname{End}(E)$ is the ring with additive group is $\operatorname{Hom}(E, E)$ and multiplication $\alpha\beta := \alpha \circ \beta$. The additive identity is 0 := [0] and the multiplicative identity is 1 := [1]. The distributive laws are verified pointwise.

Note that $\alpha\beta \neq 0$ whenever $\alpha, \beta \neq 0$ (by surjectivity), so End(E) has no zero divisors.

Lemma

The map $n \mapsto [n]$ defines an injective ring homomorphism $\mathbb{Z} \mapsto \text{End}(E)$ that agrees with scalar multiplication.

Proof: [m+n] = [m] + [n], $[mn] = [m] \circ [n]$, and $m \neq 0 \Rightarrow [m] \neq 0$ (finite kernel), and we note that $([n]\alpha)(P) = [n](\alpha(P)) = n\alpha(P) = (n\alpha)(P)$ for all $P \in E(\bar{k})$.

In End(E) we are thus free to replace [n] with n (so $\alpha + n$ means $\alpha + [n]$, for example).

The trace of an an endomorphism

Lemma

For any
$$\alpha \in \operatorname{End}(E)$$
 we have $\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha)$.

Proof:
$$\deg(1-\alpha) = (\widehat{1-\alpha})(1-\alpha) = (1-\hat{\alpha})(1-\alpha) = 1 - (\alpha + \hat{\alpha}) + \deg(\alpha).$$

Definition

The trace of $\alpha \in \text{End}(E)$ is the integer $\operatorname{tr} \alpha = \alpha + \hat{\alpha}$.

Theorem

For all $\alpha \in \text{End}(E)$ both α and $\hat{\alpha}$ are solutions to $x^2 - (\operatorname{tr} \alpha)x + \operatorname{deg} \alpha = 0$ in $\operatorname{End}(E)$.

Proof: $\alpha^2 - (\operatorname{tr} \alpha)\alpha + \operatorname{deg} \alpha = \alpha^2 - (\alpha + \hat{\alpha})\alpha + \hat{\alpha}\alpha = 0$ and similarly for $\hat{\alpha}$.

Restricting endomorphisms to E[n]

Definition

For any $\alpha \in \operatorname{End}(E)$ its restriction to E[n] is denoted $\alpha_n \in \operatorname{End}(E[n])$.

Let $n \ge 1$ be coprime to the characteristic and let $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} = \langle P_1, P_2 \rangle$. Then we can view α_n as the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where

$$\alpha(P_1) = aP_1 + bP_2$$

$$\alpha(P_2) = cP_1 + dP_2$$

The determinant and trace of this matrix do not depend on our choice of P_1 and P_2 .

Theorem

Let $\alpha \in \operatorname{End}(E)$ and let $n \ge 1$ be coprime to the characteristic. Then

 $\operatorname{tr} \alpha = \operatorname{tr} \alpha_n \mod n$ and $\operatorname{deg} \alpha = \operatorname{det} \alpha_n \mod n$.