18.783 Elliptic Curves Lecture 3

Andrew Sutherland

February 24, 2021

Representing finite fields

For $\mathbb{F}_{p} \simeq \mathbb{Z} / p \mathbb{Z}$ we use integers in $[0, p-1]$ denoting elements of $\mathbb{Z} / p \mathbb{Z}$.
For $\mathbb{F}_{q} \simeq \mathbb{F}_{p}^{d} \simeq \mathbb{F}_{p}[x] /\left(x^{d}\right)$ we use vectors in \mathbb{F}_{p}^{d} denoting elements of $\mathbb{F}_{p}[x] /\left(x^{d}\right)$, which can view as elements of $\mathbb{F}_{p}[x] /(f)$ for some irreducible $f \in \mathbb{F}_{p}[x]$ of degree d. It does not matter which f we pick, but some choices are better than others.

This reduces all computation in finite fields to integer and polynomial arithmetic.
We should note that there are other choices. If $\mathbb{F}_{q}^{\times}=\langle r\rangle$ (so r is a primitive root), we could use 0 to denote 0 and $e \in[1, q-1]$ to denote r^{e}.

Integer arithmetic

Complexity of ring operations on n-bit integers:

addition/subtraction	$O(n)$
multiplication (FFT)	$O(n \log n)$

To multiply polynomials in $\mathbb{F}_{p}[x]$ we use Kronecker substitution.
Let $\hat{f} \in \mathbb{Z}[x]$ denote the lift of $f \in \mathbb{F}_{p}[x]$ to $\mathbb{Z}[x]$. We compute $h=f g \in \mathbb{F}_{p}[x]$ via

$$
\hat{h}\left(2^{m}\right)=\hat{f}\left(2^{m}\right) \hat{g}\left(2^{m}\right)
$$

with $m \geq 2 \lg p+\lg (d+1)$, where $d:=\operatorname{deg} f$. The k th coefficient of h can be obtained by extracting the k th block of m bits from $\hat{h}\left(2^{m}\right)$ and reducing it modulo p.

All ring operations in $\mathbb{F}_{p}[x]$ can thus be reduced to ring operations in \mathbb{Z}, provided we know how to reduce integers modulo p.

Euclidean division

For positive integers a, b we want to compute the unique $q, r \geq 0$ for which

$$
a=b q+r \quad(0 \leq r<b)
$$

that is, $q=\lfloor a / b\rfloor$ and $r=a \bmod b$. Recall Newton's method to find a root of $f(x)$:

$$
x_{i+1}:=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} .
$$

To compute $c \approx 1 / b$, we apply this to $f(x)=1 / x-b$, using the Newton iteration

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}=x_{i}-\frac{\frac{1}{x_{i}}-b}{-\frac{1}{x_{i}^{2}}}=2 x_{i}-b x_{i}^{2} .
$$

We can then compute $q=\lfloor c a\rfloor$ and $r=a-b q$.

Euclidean division

As an example, let us approximate $1 / b=1 / 123456789$ working in base 10 (in an actual implementation would use base 2 , or base 2^{w}, where w is the word size).

$$
\begin{aligned}
x_{0} & =1 \times 10^{-8} \\
x_{1} & =2\left(1 \times 10^{-8}\right)-\left(1.2 \times 10^{8}\right)\left(1 \times 10^{-8}\right)^{2} \\
& =0.80 \times 10^{-8} \\
x_{2} & =2\left(0.80 \times 10^{-8}\right)-\left(1.234 \times 10^{8}\right)\left(0.80 \times 10^{-8}\right)^{2} \\
& =0.8102 \times 10^{-8} \\
x_{3} & =2\left(0.8102 \times 10^{-8}\right)-\left(1.2345678 \times 10^{8}\right)\left(0.8102 \times 10^{-8}\right)^{2} \\
& =0.81000002 \times 10^{-8} .
\end{aligned}
$$

We double the precision we are using at each step, and each x_{i} is correct up to an error in its last decimal place. The value x_{3} suffices to correctly compute $\lfloor a / b\rfloor$ for $a \leq 10^{15}$.

Euclidean division

There is an analogous algorithm for Euclidean division in $\mathbb{F}_{p}[x]$.
Given $a, b \in \mathbb{F}_{p}[x]$ with b monic we con compute the unique $q, r \in \mathbb{F}_{p}[x]$ for which

$$
a=b q+r \quad(\operatorname{deg} r<\operatorname{deg} b)
$$

See the lecture notes for details. In both cases if the divisor b is fixed we can save time by precomputing $c \approx 1 / b$ (as on Problem Set 1).

Theorem

Let $q=p^{d}$ be a prime power and assume $\log d=O(\log p)$ or $p=O(1)$.
The time to multiply two elements in \mathbb{F}_{q} is $O(\mathrm{M}(n))=O(n \log n)$, where $n=\log q$.

Under a widely believed conjecture we know that multiplication in \mathbb{F}_{q} takes time $O(n \log n)$ (but not necessarily $O(\mathrm{M}(n))$), without any assumptions about p and d.

Inverting elements of a finite field

Given integers $a>b>0$ the (extended) Euclidean algorithm computes $s, t \in \mathbb{Z}$ with

$$
\operatorname{gcd}(a, b)=a s+b t \quad(|s| \leq b / \operatorname{gcd}(a, b),|t| \leq a / \operatorname{gcd}(a, b))
$$

If $a=p$ is prime, then $p s+b t=1$ and $t \equiv b^{-1} \bmod p$ with $t \in[0, p-1]$.
The Euclidean algorithm works in any Euclidean ring, including $\mathbb{F}_{p}[x]$.
But note that $\mathbb{F}_{p}[x]$ has a larger unit group than \mathbb{Z} and $\operatorname{gcd}(a, b)$ is defined only units. More formally, $\operatorname{gcd}(a, b)=(a, b)=(c)$ is a principal ideal. In \mathbb{Z} there is a unique positive choice of c, while in $\mathbb{F}_{p}[x]$ there is a unique monic choice of c.
The fast Euclidean algorithm (see lecture notes) yields the following theorem.

Theorem

Let $q=p^{d}$ be a prime power and assume $\log d=O(\log p)$ or $p=O(1)$. The time to invert an element of \mathbb{F}_{q}^{\times}is $O(\mathrm{M}(n) \log n)=O\left(n \log ^{2} n\right)$, where $n=\log q$.

Exponentiation (also known as scalar multiplication)

Given a group element g and a positive integer a we want to compute $g^{a}=g g \cdots g$ (or if we write the group operation additively, $a g=g+g+\cdots+g$).

We can achieve this using a "square-and-multiply" (or "double-and-add") algorithm:

1. Let $a=\sum_{i=0}^{n} 2^{i} a_{i}$ and initialize h to g.
2. For i from $n-1$ down to 0 :
a. Replace h with h^{2}
b. If $a_{i}=1$ then replace h with $h g$.

At the end of the i th loop we have $h=g^{b}$ with $b=\sum_{j=0}^{n-i} 2^{j} a_{i+j}$.
This allows us to compute g^{a} using at most $2 n=O(n)$ group operations. The leading constant 2 can be improved; you will have a chance to explore this on Problem Set 2.

For \mathbb{F}_{q}^{\times}each group operation takes time $O(\mathrm{M}(n))$, and for $a \leq q-1$ the time to compute g^{a} is $O(n \mathrm{M}(n))=O\left(n^{2} \log n\right)$. Note: we can always reduce a modulo $q-1$.

