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9 The discrete logarithm problem

In its most standard form, the discrete logarithm problem in a finite group G can be stated
as follows:

Given α ∈ G and β ∈ 〈α〉, find the least positive integer x such that αx = β.

In additive notation (which we will often use), this means xα = β. In either case, we call
x the discrete logarithm of β with respect to the base α and denote it logα β.1 Note that
in the form stated above, where x is required to be positive, the discrete logarithm problem
includes the problem of computing the order of α as a special case: |α| = logα 1G.

We can also formulate a slightly stronger version of the problem:

Given α, β ∈ G, compute logα β if β ∈ 〈α〉 and otherwise report that β 6∈ 〈α〉.

This can be a significantly harder problem. For example, if we are using a Las Vegas
algorithm, when β lies in 〈α〉 we are guaranteed to eventually find logα β, but if not, we will
never find it and it may be impossible to tell whether we are just very unlucky or β 6∈ 〈α〉. On
the other hand, with a deterministic algorithm such as the baby-steps giant-steps method,
we can unequivocally determine whether β lies in 〈α〉 or not.

There is also a generalization called the extended discrete logarithm:

Given α, β ∈ G, determine the least positive integer y such that βy ∈ 〈α〉, and
then output the pair (x, y), where x = logα β

y.

This yields positive integers x and y satisfying βy = αx, where we minimize y first and x
second. Note that there is always a solution: in the worst case x = |α| and y = |β|.

Finally, one can also consider a vector form of the discrete logarithm problem:

Given α1, . . . αr ∈ G and n1, . . . , nr ∈ Z such that every β ∈ G can be writ-
ten uniquely as β = αe11 · · ·αerr with ei ∈ [1, ni], compute the exponent vector
(e1, . . . , er) associated to a given β.

Note that the group G need not be abelian in order for the hypothesis to apply, it suffices
for G to by polycyclic (this means it admits a subnormal series with cyclic quotients).

The extended discrete and vector forms of the discrete logarithm problem play an impor-
tant role in algorithms to compute the structure of a finite abelian group, but in the lectures
we will focus primarily on the standard form of the discrete logarithm problem (which we
may abbreviate to DLP).

Example 9.1. Suppose G = F×101. Then log3 37 = 24, since 324 ≡ 37 mod 101.

Example 9.2. Suppose G = F+
101. Then log3 37 = 46, since 46 · 3 ≡ 37 mod 101.

Both of these examples involve groups where the discrete logarithm is easy to compute
(and not just because 101 is a small number), but for very different reasons. In Example 9.1
we are working in a group of order 100 = 22 · 52. As we will see in the next lecture, when
the group order is a product of small primes (i.e. smooth), it is easy to compute discrete
logarithms. In Example 9.2 we are working in a group of order 101, which is prime, and in

1The multiplicative terminology stems from the fast that most of the early work on computing discrete
logarithms focused on the case where G is the multiplicative group of a finite field.
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terms of the group structure, this represents the hardest case. But in fact it is very easy
to compute discrete logarithms in the additive group of a finite field! All we need to do is
compute the multiplicative inverse of 3 modulo 101 (which is 34) and multiply by 37. This
is a small example, but even if the field size is very large, we can use the extended Euclidean
algorithm to compute multiplicative inverses in quasi-linear time.

So while the DLP is generally considered a “hard problem", its difficulty really depends
not on the order of the group (or its structure), but on how the group is explicitly rep-
resented. Every group of prime order p is isomorphic to Z/pZ; computing the discrete
logarithm amounts to computing this isomorphism. The reason it is easy to compute dis-
crete logarithms in Z/pZ has nothing to do with the structure of Z/pZ as an additive group,
rather it is the fact that Z/pZ also use a ring structure; in particular, it is a Euclidean
domain, which allows us to use the extended Euclidean algorithm to compute multiplicative
inverses. This involves operations (multiplication) other than the standard group operation
(addition), which is in some sense “cheating".

Even when working in the multiplicative group of a finite field, where the DLP is believed
to be much harder, we can do substantially better than in a generic group. As we shall see,
there are sub-exponential time algorithms for this problem, whereas in the generic setting
defined below, only exponential time algorithms exist, as we will prove in the next lecture.

9.1 Generic group algorithms

In order to formalize the notion of “not cheating", we define a generic group algorithm (or
just a generic algorithm) to be one that interacts with an abstract group G solely through
a black box (sometimes called an oracle). All group elements are opaquely encoded as bit-
strings via a map id : G → {0, 1}m chosen by the black box. The black box supports the
following operations.

1. identity: output id(1G).

2. inverse: given input id(α), output id(α−1).

3. composition: given inputs id(α) and id(β), output id(αβ).

4. random: output id(α) for a uniformly distributed random element α ∈ G.

In the description above we used multiplicative notation; in additive notation we would have
outputs id(0G), id(−α), id(α−β) for the operations identity, inverse, composition,
respectively.

Some models for generic group algorithms also include a black box operation for testing
equality of group elements, but we will instead assume that group elements are uniquely
identified ; this means that the identification map id : G→ {0, 1}m used by the black box is
injective. With uniquely identified group elements we can test equality by simply comparing
identifiers, without needing to consult the black box.2

The black box is allowed to use any injective identification map (e.g., a random one). A
generic algorithm cannot depend on a particular choice of the identification map; this pre-
vents it from taking advantage of how group elements are represented. We have already seen
several examples of generic group algorithms, including various exponentiation algorithms,
fast order algorithms, and the baby-steps giant-steps method.

2We can also sort bit-strings or index them with a hash table or other data structure; this is essential to
an efficient implementation of the baby-steps giant-steps algorithm.
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We measure the time complexity of a generic group algorithm by counting group oper-
ations, the number of interactions with the black box. This metric has the virtue of being
independent of the actual software and hardware implementation, allowing one to make com-
parisons the remain valid even as technology improves. But if we want to get a complete
measure of the complexity of solving a problem in a particular group, we need to multiply
the group operation count by the bit-complexity of each group operation, which of course
depends on the black box. To measure the space complexity, we count the total number of
group identifiers stored at any one time (i.e. the maximum number of group identifiers the
algorithm ever has to remember).

These complexity metrics do not account for any other work done by the algorithm. If
the algorithm wants to compute a trillion digits of pi, or factor some huge integer, it can
effectively do so “for free”. The implicit assumption is that the cost of any useful auxiliary
computations are at worst proportional to the number of group operations — this is true of
all the algorithms we will consider.

9.2 Generic algorithms for the discrete logarithm problem

We now consider generic algorithms for the discrete logarithm problem in the standard
setting of a cyclic group 〈α〉. We shall assume throughout that N := |α| is known. This
is a reasonable assumption for three reasons: (1) in cryptographic applications it is quite
important to know N (or at least to know that N is prime), (2) the lower bound we shall
prove applies even when the algorithm is given N , (3) for a generic algorithm, computing
|α| is strictly easier than solving the discrete logarithm problem [12], and in most cases of
practical interest (the group of rational points on an elliptic curve over a finite field, for
example), there are (non-generic) polynomial time algorithms to compute N .

The cyclic group 〈α〉 is isomorphic to the additive group Z/NZ. For generic group
algorithms we may as well assume 〈α〉 is Z/NZ, generated by α = 1, since every cyclic
group of order N looks the same when it is hidden inside a black box. Of course with the
black box picking arbitrary group identifiers in {0, 1}m, we cannot actually tell which integer
x in Z/NZ corresponds to a particular group element β; indeed, x is precisely the discrete
logarithm of β that we wish to compute! Thus computing discrete logarithms amounts to
explicitly computing the isomorphism from 〈α〉 to Z/NZ that sends α to 1. Computing the
isomorphism in the reverse direction is easy: this is just exponentiation. Thus we have (in
multiplicative notation):

〈α〉 ' Z/NZ
β → logα β

αx ← x

Cryptographic applications of the discrete logarithm problem rely on the fact that it is
easy to compute β = αx but hard (in general) to compute x = logα β. In order to simplify
our notation we will write the group operation additively, so that β = xα.

9.3 Linear search

Starting from α, compute
α, 2α, 3α, . . . , xα = β,

and then output x (or if we reach Nα with out finding β, report that β 6∈ 〈α〉). This uses
at most N group operations, and the average over all inputs is N/2 group operations.
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We mention this algorithm only for the sake of comparison. Its time complexity is not
attractive, but we note that its space complexity is O(1) group elements.

9.4 Baby-steps giant-steps

Pick positive integers r and s such that rs > N , and then compute:

baby steps: 0, α, 2α, 3α, . . . , (r − 1)α,
giant steps: β, β − rα, β − 2rα, . . . , β − (s− 1)rα,

A collision occurs when we find a baby step that is equal to a giant step. We then have

iα = β − jrα,

for some nonnegative integers i < r and j < s. If i = j = 0, then β is the identity and
logα β = N . Otherwise,

logα β = i+ jr.

Typically the baby steps are stored in a lookup table, allowing us to check for a collision
as each giant step is computed, so we don’t necessarily need to compute all the giant steps.
We can easily detect β 6∈ 〈α〉, since every integer in [1, N ] can be written in the form i+ jr
with 0 ≤ i < r and 0 ≤ j < s. If we do not find a collision, then β 6∈ 〈α〉.

The baby-steps giant-steps algorithm uses r+ s group operations, which is O(
√
N) if we

choose r ≈ s ≈
√
N . It requires space for r group elements (the baby steps), which is also

O(
√
N) but can be made smaller if we are willing to increase the running time by making s

larger; there is thus a time-space trade-off we can make, but the product of the time and
space complexity is always Ω(N).

The two algorithms above are insensitive to any special properties of N , their complexi-
ties depend only on its approximate size. In fact, if we assume that β ∈ 〈α〉 then we do not
even need to know N : this is clear for the linear search, and for the baby-steps giant-steps
method we could simply start by assuming N = 2 and if/when that fails, keep doubling N
and rerunning the algorithm until we succeed. This still yields an O(

√
N) complexity.3

For the next algorithm we consider it is quite important to know N exactly, in fact we
will assume that we know its prime factorization; factoring N does not require any group
operations, so in our complexity model which counts group operations, a generic algorithm
can factor any integer N “for free”. In practical terms, there are algorithms to factor N that
are much faster than the generic lower bound we will prove below; as we will see in the next
lecture, the elliptic curve factorization method is one such algorithm.

9.5 The Pohlig-Hellman algorithm

We now introduce the Pohlig-Hellman4 algorithm, a recursive method to reduce the discrete
logarithm problem in cyclic groups of composite order to discrete logarithm problems in
cyclic groups of prime order.

3There are more efficient ways to do an unbounded baby-steps giant-steps search, see [12, 14].
4The article by Pohlig and Hellman [6] notes that essentially equivalent versions of the algorithm were

independently found by R. Silver, and by R. Schroeppel and H. Block, none of whom published the result.
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We first reduce to the prime power case. Suppose N = N1N2 with N1 ⊥ N2. Then
Z/NZ ' Z/N1Z ⊕ Z/N2Z, by the Chinese remainder theorem, and we can make this iso-
morphism completely explicit via

x → (x mod N1, x mod N2),

(M1x1 +M2x2) mod N ← (x1, x2),

where

M1 = N2(N
−1
2 mod N1) ≡

{
1 mod N1,

0 mod N2,
(1)

M2 = N1(N
−1
1 mod N2) ≡

{
0 mod N1,

1 mod N2.
(2)

Note that computing Mi and Ni does not involve group operations and is independent of β;
with the fast Euclidean algorithm the time to compute M1 and M2 is O(M(n) log n) bit
operations, where n = logN .

Let us now consider the computation of x = logα β. Define

x1 := x mod N1 and x2 := x mod N2,

so that x = M1x1 +M2x2, and

β = (M1x1 +M2x2)α.

Multiplying both sides by N2 and distributing the scalar multiplication yields

N2β = M1x1N2α+M2x2N2α. (3)

As you proved in Problem Set 1, the order of N2α is N1 (since N1 ⊥ N2). From (1) and (2)
we have M1 ≡ 1 mod N1 and M2 ≡ 0 mod N1, so the second term in (3) vanishes and the
first term can be simplified, yielding

N2β = x1N2α.

We similarly find that N1β = x2N1α. Therefore

x1 = logN2αN2β,

x2 = logN1αN1β.

If we know x1 and x2 then we can compute x = (M1x1 + M2x2) mod N . Thus the
computation of x = logα β can be reduced to the computation of x1 = logN2αN2β and
x2 = logN1αN1β. If N is a prime power this doesn’t help (either N1 = N or N2 = N), but
otherwise these two discrete logarithms involve groups of smaller order. In the best case
N1 ≈ N2, and we reduce our original problem to two subproblems of half the size, and this
reduction involves only O(n) groups operations (the time to compute N1α,N1β,N2α,N2β
using double-and-add scalar multiplication).

By applying the reduction above recursively, we can reduce to the case where N is a
prime power pe, which we now assume. Let e0 = de/2e and e1 = be/2c. We may write
x = logα β in the form x = x0 + pe0x1, with 0 ≤ x0 < pe0 and 0 ≤ x1 < pe1 . We then have

β = (x0 + pe0x1)α,

pe1β = x0p
e1α+ x1p

eα.
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The second term in the last equation is zero, since α has order N = pe, so

x0 = logpe1α p
e1β.

We also have β − x0α = pe0x1α, therefore

x1 = logpe0α(β − x0α).

If N is not prime, this again reduces the computation of logα β to the computation of two
smaller discrete logarithms (of roughly equal size) using O(n) group operations.

The Pohlig-Hellman method [6] recursively applies the two reductions above to reduce
the problem to a set of discrete logarithm computations in groups of prime order.5 For
these computations we must revert to some other method, such as baby-steps giant-steps
(or Pollard-rho, which we will see shortly). When N is a prime p, the complexity is then
O(
√
p) group operations.

9.6 Complexity analysis

Let N = pe11 · · · perr be the prime factorization of N . Reducing to the prime-power case
involves at most lg r = O(log n) levels of recursion, where n = logN (in fact the prime
number theorem implies lg r = O(log n/ log log n), but we won’t use this). The exponents ei
are all bounded by lgN = O(n), thus reducing prime powers to the prime case involves at
most an additional O(log n) levels of recursion, since the exponents are reduced by roughly
a factor of 2 at each level.

The total depth of the recursion tree is thus O(log n). Note that we do not need to assume
anything about the prime factorization of N in order to obtain this bound; in particular,
even if the prime powers peii vary widely in size, this bound still holds.

The product of the orders of the bases used at any given layer of the recursion tree never
exceeds N . The number of group operations required at each internal node of the recursion
tree is linear in the bit-size of the order of the base, since only O(1) scalar multiplications are
used in each recursive step. Thus if we exclude the primes order cases at the leaves, every
layer of the recursion tree uses O(n) group operations. If we use the baby-steps giant-steps
algorithm to handle the prime order cases, each leaf uses O(

√
pi) group operations and the

total running time is
O
(
n log n+

∑
ei
√
pi

)
group operations, where the sum is over the distinct prime divisors pi of N . We can also
bound this by

O (n log n+ n
√
p) ,

where p is the largest prime dividing N . The space complexity is O(
√
p) group elements,

assuming we use a baby-steps giant-steps search for the prime cases; this can be reduced
to O(1) using the Pollard-rho method (which is the next algorithm we will consider), but
this results in a probabilistic (Las Vegas) algorithm, whereas the standard Pohlig-Hellman
approach is deterministic.

5The original algorithm of Pohlig and Hellman actually used an iterative approach that is not as fast as
the recursive approach suggested here. The recursive approach for the prime-power case that we use here
appears in [9, §11.2.3]. When N = pe is a power of a prime p = O(1), the complexity of the original Pohlig-
Hellman algorithm is O(n2), versus the O(n logn) bound we obtain here (this can be further improved to
O(n logn/ log logn) via [13]).
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The Pohlig-Hellman algorithm can be extremely efficient when N is composite; if N is
sufficiently smooth its running time is quasi-linear in n = logN , comparable to the cost of
exponentiation. Thus it is quite important to use groups of prime (or near-prime) order in
cryptographic applications of the discrete logarithm problem. This is one of the motivations
for efficient point-counting algorithms for elliptic curves: we really need to know the exact
group order before we can consider a group suitable for cryptographic use.

9.7 Randomized algorithms for the discrete logarithm problem

So far we have only considered deterministic algorithms for the discrete logarithm problem.
We now consider a probabilistic approach. Randomization will not allow us to achieve a
better time complexity (a fact we will prove shortly), but we can achieve a much better space
complexity. This also makes it much easier to parallelize the algorithm, which is crucial for
large-scale computations (one can construct a parallel version of the baby-steps giant-steps
algorithm, but detecting collisions is more complicated and requires a lot of communication).

9.7.1 The birthday paradox

Recall what the so-called birthday paradox tells us about collision frequency: if we drop
Ω(
√
N) balls randomly into O(N) bins then the probability that some bin contains more

than one ball is bounded below by some nonzero constant that we can make arbitrarily
close to 1 by increasing the number of balls by a constant factor. Given β ∈ 〈α〉, the
baby-steps giant-steps method for computing logα β can be viewed as dropping

√
2N balls

corresponding to linear combinations of α and β into N bins corresponding to the elements
of 〈α〉. Of course these balls are not dropped randomly, they are dropped in a pattern that
guarantees a collision.

But if we instead computed
√

2N random linear combinations of α and β, we would still
have a good chance of finding a collision (better than 50/50, in fact). The main problem
with this approach is that in order to find the collision we would need to keep a record of all
the linear combinations we have computed, which takes space. In order to take advantage
of the birthday paradox in a way that uses less space we need to be a bit more clever.

9.7.2 Random walks on a graph

We now want to view the group G = 〈α〉 as the vertex set V of a connected graph Γ whose
edges eij = (γi, γj) are labeled with the group element δij = γj − γi satisfying γi + δij = γj
(a Cayley graph, for example). If we know how to express each δij as a linear combination
of α and β ∈ 〈α〉, then any cycle in Γ yields a linear relation involving α and β. Provided
the coefficient of β is invertible modulo N := |α|, we can use this relation to compute logα β.

Suppose we use a random function f : V → V to construct a walk from a random starting
point v0 ∈ V as follows:

v1 = f(v0)

v2 = f(v1)

v3 = f(v2)

...
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Since f is a function, if we ever repeat a vertex, say vρ = vλ for some ρ > λ, we will be
permanently stuck in a cycle, since we then have f(vρ+i) = f(vλ+i) for all i ≥ 0. Note
that V is finite, so this must happen eventually.

Our random walk consists of two parts, a path from v0 to the vertex vλ, the first vertex
that is visited more than once, and a cycle consisting of the vertices vλ, vλ+1, . . . , vρ−1. This
can be visualized as a path in the shape of the Greek letter ρ, which explains the name of
the ρ-method we wish to consider.

In order to extract information from this cycle we need to augment the function f so
that we can associate linear combinations aα+ bβ to each edge in the cycle. But let us first
compute the expected number of steps a random walk takes to reach its first collision.

Theorem 9.3. Let V be a finite set. For any v0 ∈ V , the expected value of ρ for a walk
from v0 defined by a random function f : V → V is

E[ρ] ∼
√
πN/2,

as the cardinality N of V tends to infinity.

This theorem was stated in lecture without proof; here give an elementary proof.

Proof. Let Pn = Pr[ρ > n]. We have P0 = 1 and P1 = (1− 1/N), and in general

Pn =

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n

N

)
=

n∏
i=1

(
1− i

N

)
for any n < N (and Pn = 0 for n ≥ N). We compute the expectation of ρ as

E[ρ] =
N−1∑
n=1

n · Pr[ρ = n]

=
N−1∑
n=1

n · (Pn−1 − Pn),

= 1(P0 − P1) + 2(P1 − P2) + . . .+ n(Pn−1 − Pn)

=

N−1∑
n=0

Pn − nPn. (4)

In order to determine the asymptotic behavior of E[ρ] we need tight bounds on Pn. Using
the fact that log(1− x) < −x for 0 < x < 1, we obtain an upper bound on Pn:

Pn = exp

(
n∑
i=1

log

(
1− i

N

))

< exp

(
− 1

N

n∑
i=1

i

)

< exp

(
−n2

2N

)
.
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To establish a lower bound, we use the fact that log(1− x) > −x− x2 for 0 < x < 1
2 , which

can be verified using the Taylor series expansion for log(1− x).

Pn = exp

(
n∑
i=1

log

(
1− i

N

))

> exp

(
−

n∑
i=1

(
i

N
+

i2

N2

))
.

We now let M = N3/5 and assume n < M . In this range we have

n∑
i=1

(
i

N
+

i2

N2

)
<

n∑
i=1

(
i

N
+N−

4
5

)
<
n2 + n

2N
+N−

1
5

<
n2

2N
+

1

2
N−

2
5 +N−

1
5

<
n2

2N
+ 2N−

1
5 ,

which implies

Pn > exp

(
−n2

2N

)
exp

(
−2N−

1
5

)
=
(
1 + o(1)

)
exp

(
−n2

2N

)
.

We now return to the computation of E[ρ]. From (4) we have

E[ρ] =

bMc∑
n=0

Pn +

N−1∑
n=dMe

Pn + o(1) (5)

where the error term comes from nPn < n exp (−n
2

2N ) = o(1) (we use o(1) to denote any term
whose absolute value tends to 0 as N →∞). The second sum is negligible, since

N−1∑
n=dMe

Pn < N exp
(
− M2

2N

)
= N exp

(
− 1

2
N−

1
5
)

= o(1). (6)
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For the first sum we have
dMe∑
n=0

Pn =

dMe∑
n=0

(
1 + o(1)

)
exp

(
− n2

2N

)
=
(
1 + o(1)

) ∫ ∞
0

e−
x2

2N dx+O(1)

=
(
1 + o(1)

)√
2N

∫ ∞
0

eu
2
du+O(1)

=
(
1 + o(1)

)√
2N(
√
π/2)

=
(
1 + o(1)

)√
πN/2. (7)

Plugging (6) and (7) in to (5) yields the desired result.

Remark 9.4. One can similarly show E[λ] = E[σ] = 1
2E[ρ] =

√
πN/8, where σ = ρ− λ is

the length of the cycle.

In the baby-steps giant-steps algorithm (BSGS), if we assume that the discrete logarithm
is uniformly distributed over [1, N ], then we should use

√
N/2 baby steps and expect to

find the discrete logarithm after
√
N/2 giant steps, on average, using a total of

√
2N group

operations. But note that
√
π/2 ≈ 1.25 is less than

√
2 ≈ 1.41, so we may hope to compute

discrete logarithms slightly faster than BSGS (on average) by simulating a random walk. Of
course the worst-case running time for BSGS is better, since we will never need more than√

2N giant steps, but with a random walk the (very unlikely) worst case is N steps.

9.8 Pollard-ρ Algorithm

We now present the Pollard-ρ algorithm for computing logα β, given β ∈ 〈α〉; we should
note that the assumption β ∈ 〈α〉 which was not necessary in the baby-steps giant-steps
algorithm is crucial here. As noted earlier, finding a collision in a random walk is useful
to us only if we know how to express the colliding group elements as independent linear
combinations of α and β. We thus extend the function f : G→ G used to define our random
walk to a function

f : Z/NZ× Z/NZ×G→ Z/NZ× Z/NZ×G,

which we require to have the property that if the input (a, b, γ) satisfies aα+ bβ = γ, then
(a′, b′, γ′) = f(a, b, γ) should satisfy a′α+ b′β = γ′.

There are several ways to define such a function f , one of which is the following. We
first fix r distinct group elements δi = ciα+diβ for some randomly chosen ci, di ∈ Z/NZ. In
order to simulate a random walk, we don’t want r to be too small: empirically r ≈ 20 works
well [15]. We then define f(a, b, γ) = (a+ ci, b+ di, γ+ δi), where i = h(γ) is determined by
a randomly chosen hash function

h : G→ {1, . . . , r}.

In practice we don’t choose h randomly, we just need the preimages h−1(i) to partition G
into r subsets of roughly equal size; for example, we might take the integer whose base-2
representation corresponds to the identifier id(γ) ∈ {0, 1}m and reduce it modulo r.6

6Note the importance of unique identifiers. We must be sure that γ is always hashed to to the same
value. Using a non-unique representation such as projective points on an elliptic curve will not achieve this.
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To start our random walk, we pick random a0, b0 ∈ Z/NZ and let γ0 = a0α + b0β.
The walk defined by the iteration function f is known as an r-adding walk. Note that if
(aj+1, bj+1, γj+1) = f(aj , bj , γj), the value of γj+1 depends only on γj , not on aj or bj , so
the function f does define a walk in the same sense as before. We now give the algorithm.

Algorithm 9.5 (Pollard-ρ). Given α, N = |α|, β ∈ 〈α〉 , compute logα β as follows:

1. Compute δi = ciα+ diβ for r ≈ 20 randomly chosen pairs ci, di ∈ Z/NZ.
2. Compute γ0 = a0α+ boβ for randomly chosen a0, b0 ∈ Z/NZ.
3. Compute (aj , bj , γj) = f(aj−1, bj−1, γj−1) for j = 1, 2, 3, . . ., until γk = γj with k > j.

4. The collision γk = γj implies ajα+bjβ = akα+bkβ. Provided that bk−bj is invertible
in Z/NZ, we return logα β =

aj−ak
bk−bj ∈ Z/NZ; otherwise start over at step 1.

Note that if N = |α| is a large prime, it is extremely likely that bk− bj will be invertible. In
any case, by restarting we ensure that the algorithm terminates with probability 1, since it
is certainly possible to have γ0 = xα and γ1 = β, where x = logα β, for example. With this
implementation the Pollard rho algorithm is a Las Vegas algorithm, even though it is often
referred to in the literature as a Monte Carlo algorithm, due to the title of [8].

The description above does not specify how we should detect collisions. A simple method
is to store all the γj as they are computed and look for a collision during each iteration.
However, this implies a space complexity of ρ, which we expect to be on the order of

√
N .

But we can use dramatically less space than this.
The key point is that once the walk enters a cycle, it will remain inside this cycle

forever, and every step inside the cycle produces a collision. It is thus not necessary to
detect a collision at the exact moment we enter the cycle, we can afford a slight delay. We
now consider two space-efficient methods for doing this.

9.9 Floyd’s cycle detection method

Floyd’s cycle detection method [5, Ex. 3.1.6, p. 7] minimizes the space required: it keeps
track of just two triples (aj , bjγj) and (ak, bk, γk) that correspond to vertices of the walk (of
course it also needs to store ci, di, γi for 0 ≤ i < r). The method is typically described in
terms of a tortoise and a hare that are both traveling along the ρ-shaped walk. They start
with the same γ0, but in each iteration the hare takes two steps, while the tortoise takes
just one. We thus modify step 3 of Algorithm 9.5 to compute

(aj , bj , γj) = f(aj−1, bj−1, γj−1)

(ak, bk, γk) = f(f(ak−1, bk−1, γk−1)).

The triple (aj , bjγj) corresponds to the tortoise, and the triple (ak, bk, γk) corresponds to
the hare. Once the tortoise enters the cycle, the hare (which must already be in the cycle) is
guaranteed to collide with the tortoise within σ iterations, where σ is the length of the cycle
(to see this, note that the hare gains on the tortoise by one step in each iteration and cannot
pass the tortoise without landing on it). On average, we expect it to take σ/2 iterations for
the hare to catch the tortoise and produce a collision, which we detect by testing whether
γj = γk after each iteration.

The expected number of iterations is thus E[λ+σ/2] = 3/4 E[ρ]. But each iteration now
requires three group operations, so the algorithm is actually slower by a factor of 9/4. Still,
this achieves a time complexity of O(

√
N) group operations while storing just O(1) group

elements, which is a dramatic improvement.
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9.10 The method of distinguished points

The “distinguished points” method (commonly attributed to Ron Rivest) uses slightly more
space, say O(logcN) group elements, for some constant c, but it detects cycles in essentially
optimal time (within a factor of 1 + o(1) of the best possible), and uses just one group
operation for each iteration, rather then the three required by Floyd’s method.

The idea is to “distinguish” a certain subset of G by fixing a random boolean function
B : G → {0, 1} and calling the elements of B−1(1) distinguished points. We don’t want
the set of distinguished points to be too large, since we will store all the distinguished we
encounter during our walk, but we want our walk to contain many distinguished points; say
(logN)c, on average, for some constant c > 0. This means we should choose B so that

#B−1(1) ≈
√
N(logN)c.

One way to define such a function B is to hash group elements to bit-strings of length k
via a hash function h̃ : G → {0, 1}k, and then let B(γ) = 1 if and only if h̃(γ) is the zero
vector. If we set k = 1

2 log2N−c log2 logN then B−1(1) will have the desired cardinality. An
easy and very efficient way to construct the hash function h̃ is to use the k least significant
bits of the bit-string that uniquely represents the group element. For points on elliptic
curves, we should use bits from the x-coordinate, since this will allow us to detect collisions
of the form γj = ±γk (we can determine the sign by checking y-coordinates).

Algorithm 9.6 (Pollard-ρ using distinguished points).

1. Pick random ci, di, a0, b0 ∈ Z/NZ, compute δi = ciα + diβ and γ0 = a0α + b0β, and
initialize D ← ∅.

2. For j = 1, 2, 3, ...:
a. Compute (aj , bj , γj) = f(aj−1, bj−1, γj−1).
b. If B(γj) = 1 then

i. If there exists (ak, bk, γk) ∈ D with γj = γk then return logα β =
aj−ak
bk−bj if

gcd(bk − bj , N) = 1 and restart at step 1 otherwise.
ii. If not, replace D by D ∪ {(aj , bj , γj)} and continue.

A key feature of the distinguished points method is that it is well-suited to a massively
parallel implementation, which is critical for any large-scale discrete logarithm computation.
Suppose we have many processors all running the same algorithm independently. If we have,
say,
√
N processors, then after just one step there is a good chance of a collision, and in

general if we have m processors we expect to get a collision within O(
√
N/m) steps. We can

detect this collision as soon as the processors involved in the collision reach a distinguished
point. However, the individual processors cannot realize this themselves, since they only
know the distinguished points they have seen, not those seen by other processors. Whenever
a processor encounters a distinguished point, it sends the corresponding triple to a central
server that is responsible for detecting collisions. This scenario is also called a λ-search,
since the collision typically occurs between paths with different starting points that then
follow the same trajectory (forming the shape of the letter λ, rather than the letter ρ).

There is one important detail that must be addressed: if there are no distinguished
points in the cycle then Algorithm 9.6 will never terminate!

The solution is to let the distinguished set S grow with time. We begin with S = h̃−1(0),
where h̃ : G → {0, 1}k with k = 1

2 log2N − c log2 logN . Every
√
πN/2 iterations, we
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decrease k by 1. This effectively doubles the number of distinguished points, and when k
reaches zero we consider every point to be distinguished. This guarantees termination, and
the expected space is still just O(logcN) group elements.

9.11 Current ECDLP records

The current record for computing discrete logarithms on elliptic curves over finite fields
involves a cyclic group with 117-bit prime order on an elliptic curve E/Fq with q = 2127

and was set in 2016. The computation was run on 576 XC6SLX150 FPGAs and took about
200 days [1]. The current record for elliptic curves over prime fields was set in 2017 using
the curve E : y2 = x3 + 3 over the 114-bit prime field F11957518425389075254535992784167879 with
#E(Fp) prime. This computation took advantage of the extra automorphisms of this curve
and took the equivalent of 81 days running on 2000 Intel cores [4]. The record for elliptic
curves over prime fields without extra automorphisms was set in 2009 using a 112-bit prime
order group on an elliptic curve E/Fp with p = (2128− 3)/(11 · 6949); this computation was
run on a cluster of 200 PlayStation 3 consoles and took 180 days [3]. All of these records
were set using a parallel Pollard-rho search and the method of distinguished points.

We should note that for elliptic curves over non-prime fields the non-generic methods we
will discuss in the next lecture (index calculus) can be applied. This changes the situation
dramatically, and it is now practical to solve the discrete logarithm problem on an elliptic
curves over Fq for suitably composite q with thousands of bits. But for elliptic curves over
prime fields we know of no methods other than generic algorithms.

This claim holds even for quantum computers: there are very efficient algorithms for
solving the discrete logarithm problem on an elliptic curve over a prime field, but these
algorithms are generic in the sense that they apply to any group for which the group oper-
ation can be effectively implemented on a quantum computer using unique representations
of group elements, an assumption that is already implicit in our black box model.

9.12 Computing discrete logarithms via the hidden subgroup problem

While we won’t discuss quantum computing in this course (take 18.435J), let us briefly
describe an efficient generic algorithm for solving the discrete logarithm on a quantum
computer. As first proposed by Peter Shor [10] for computing discrete logarithms in F×p and
then generalized by others, this involves a reduction to what is now known as the hidden
subgroup problem (HSP). We are given a finite group G containing a subgroup H along with
a function f : G → S that is constant on cosets of H and maps each coset to a distinct
element of S; here S can be any finite set, but for us S will actually be the group we want
to compute a discrete logarithm in.

The hidden subgroup problem is to compute a set of generators for the unknown group H
using f and group operation in G. There is an efficient polynomial-time algorithm to solve
this problem on a quantum compute when H is abelian7 assuming the group operation in G
can be efficiently implemented on a quantum computer.8 We won’t describe the quantum
algorithm for solving the hidden subgroup problem here, our aim is simply to show how it
can be used to easily solve the discrete logarithm problem.

7The hidden subgroup problem for non-abelian groups is still open; even for dihedral groups we do not
have a quantum polynomial-time algorithm.

8One can encapsulate this assumption by postulating a “quantum black box” that is used by “quantum
generic group algorithms”, just as we did for classical generic group algorithms above.
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To compute the discrete logarithm problem of β = αx in the cyclic group 〈α〉 of order N
one defines G, H, S, and f as follows:

G := Z/NZ× Z/NZ, H := 〈(x, 1)〉, S := 〈α〉, f : G→ S

(a, b) 7→ bβ − aα

The computation of f only requires the inputs α, β and operations in the group 〈α〉, it does
not require knowledge of H or the discrete logarithm x we are tying to compute. We can use
the standard double-and-add algorithm to compute f using O(n) group operations. Given
any set of generators for H we can easily recover x. All we need is an element (a, b) ∈ H
with b ⊥ N , since x = ab−1 mod N ; if N is prime any nonzero element of H will do, and in
general we can easily construct such an element as a linear combination of whatever set of
generators our quantum computer gives us.

9.13 A generic lower bound for the discrete logarithm problem

We will now prove an essentially tight lower bound for solving the discrete logarithm problem
with a generic group algorithm. We will show that if p is the largest prime divisor of N ,
then any generic group algorithm for the discrete logarithm problem must use Ω(

√
p) group

operations. In the case that the group order N = p is prime this bound is tight, since we
have already seen that the problem can be solved with O(

√
N) group operations using the

baby-steps giant-steps method, and the Pohlig-Hellman complexity bound O(n log n+n
√
p)

shows that it is tight in general, up to logarithmic factors.
This lower bound applies not only to deterministic algorithms, but also to randomized

algorithms: a generic Monte Carlo algorithm for the discrete logarithm problem must use
Ω(
√
p) group operations in order to be correct with probability bounded above 1/2, and the

expected running time of any generic Las Vegas algorithm is Ω(
√
p) group operations.

The following theorem due to Shoup [11] generalizes an earlier result of Nechaev [7]. Our
presentation here differs slightly from Shoup’s and gives a sharper bound, but the proof is
essentially the same. Recall that in our generic group model, each group element is uniquely
represented as a bit-string via an injective map id : G ↪→ {0, 1}m, where m = O(log |G|).

Theorem 9.7 (Shoup). Let G = 〈α〉 be group of order N . Let B be a black box for G sup-
porting the operations identity, inverse, and compose, using a random identification
map id : G ↪→ {0, 1}m. Let A : {0, 1}m × {0, 1}m → Z/NZ be a randomized generic group
algorithm that makes at most s− 4dlgNe calls to B, for some integer s, and let x denote a
random element of Z/NZ. Then

Pr
x,id,τ

[A(id(α), id(xα)) = x] <
s2

2p
,

where τ denotes the random coin-flips made by A and p is the largest prime factor of N .

Note that A can generate random elements of G by computing zα for random z ∈ Z/NZ
(using at most 2 lgN group operations). We assume that A is given the group order N
(this only makes the theorem stronger). The theorem includes deterministic algorithms as a
special case where A does not use any of the random bits in τ . Bounding the number of calls
A makes to B might appear to make the theorem inapplicable to Las Vegas algorithms, but
we can convert a Las Vegas algorithm to a Monte Carlo algorithm by forcing it to halt and
generate a random output if it exceeds its expected running time by some constant factor.
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In order to simplify the presentation we will only prove Theorem 9.7 in the case N = p is
prime; the proof for composite N is an easy generalization of the prime order case, which in
some sense the only case that matters given our O(n log n+n

√
p) upper bound (n = logN).

Proof of Theorem 9.7 for N = p prime. To simplify the proof, we will replace A by an al-
gorithm A′ that does the following:

1. Use B to compute id(Nα) = id(0).
2. Simulate A, using id(0) to replace identity operations, to get y = A(id(α), id(xα)).
3. Use B to compute id(yα).

In the description above we assume that the inputs to A are id(α) and id(xα); the behavior
of A′ when this is not the case is irrelevant. Note that steps 1 and 3 each require at most
2dlog2Ne − 1 calls to B using double-and-add, so A′ makes at most s− 2 calls to B.

Let γ1 = id(α) and γ2 = id(xα). Without loss of generality we may assume that every
interaction between A′ and B is of the form γk = γi± γj , with 1 ≤ i, j < k, where γi and γj
are identifiers of group elements that are either inputs or values previously returned by B
(here the notation γi ± γj means that A′ is using B to add or subtract the group elements
identified by γi and γj). Note that A′ can invert γj by computing id(0)− γj .

The number of such interactions is clearly a lower bound on the number of calls made
by A′ to B. To further simplify matters, we will assume that the execution of A′ is padded
with operations of the form γk = γ1 + γ1 as required until k reaches s.

For k = 1, . . . , s define Fk = akX + bk ∈ Z/pZ[X] via:

F1 := 1, F2 := X, Fk := Fi ± Fj (2 < k ≤ s).

Each Fk is a linear polynomial in X that satisfies

Fk(x) ≡ logγ1 γk mod p,

where we are abusing notation by writing γk = id(gk) in place of gk ∈ G.
Let us now consider the following game, which models the execution of A′. At the start

of the game we set F1 = 1, F2 = X, z1 = 1, and set z2 to a random element of Z/MZ.
We also set γ1 and γ2 to distinct random values in {0, 1}m. For rounds k = 2, 3, . . . , s, the
algorithm A′ and the black box B play the game as follows:

1. A′ chooses a pair of integers i and j, with 1 ≤ i, j < k, and a sign ± that determines
Fk = Fi ± Fj , and then asks B for the value of γk = γi ± γj .

2. B sets γk = γk′ if Fk = Fk′ for some k′ < k, and otherwise B sets γk to a random
bit-string in {0, 1}m that is distinct from γk′ for all k′ < k.

After the sth round we pick t ∈ Z/pZ at random and say that A′ wins if Fi(t) = Fj(t) for
any Fi 6= Fj ; otherwise B wins. Notice that the group G also plays no role in the game, it
just involves bit-strings, but the constraints on B’s choice of γk ensure that the bit strings
γ1, . . . , γs can be assigned to group elements in a consistent way. We now claim that

Pr
x,id,τ

[A(id(α), id(xα)) = x] ≤ Pr
t,id,τ

[A′ wins the game], (8)

where the id function on the right represents an injective map G ↪→ {0, 1}m that is compat-
ible with the choices made by B during the game, in other words, there exists a sequence of
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group elements α = α1, α2, α3, . . . , αs such that id(αi) = γi and αk = αi ± αj , where i, j,
and the sign ± correspond to the values chosen by A′ in the kth round.

Any triple (x, id, τ) for which A(id(α), id(xα)) = x is also a triple (t, id, τ) for which A′
wins the game; here we use the fact that A′ always computes yα, where y = A(id(α), id(xα)),
so A′ forces a collision to occur whenever A outputs the correct value of x even if A did not
actually encounter a collision (maybe A just made a lucky guess). Thus (8) holds.

We now bound the probability that A′ wins the game. Consider any particular execution
of the game, and let Fij = Fi − Fj . We claim that for all i and j such that Fij 6= 0,

Pr
t

[Fij(t) = 0] ≤ 1

p
. (9)

We have Fij(X) = aX+ b for some a, b ∈ Z/pZ with a and b not both zero. If a is zero then
Fij(t) = b 6= 0 for all t ∈ Z/pZ and (9) holds. Otherwise the map [a] : t 7→ at is a bijection,
and in either case there is at most one value of t for which Fij(t) = 0, which proves (9).

If A′ wins the game then there must exist an Fij 6= 0 for which Fij(t) = 0. Furthermore,
since Fij(t) = 0 if and only if Fji(t) = 0, we may assume i < j. Thus

Pr
t,id,τ

[A′ wins the game] ≤ Pr
t,id,τ

[Fij(t) = 0 for some Fij 6= 0 with i < j]

≤
∑

i<j,Fij 6=0

Pr
t

[Fij(t) = 0]

≤
(
s

2

)
1

p
<
s2

2p
,

where we have used the union bound (Pr[A ∪B] ≤ Pr(A) + Pr(B)) to obtain the sum.

Corollary 9.8. Let G be a cyclic group of prime order N . Every deterministic generic algo-
rithm for the discrete logarithm problem in G uses at least (

√
2+o(1))

√
N group operations.

The baby-steps giant-steps algorithm uses (2 + o(1))
√
N group operations in the worst

case, so this lower bound is tight up to a constant factor, but there is a slight gap. In fact,
the baby-steps giant-steps method is not quite optimal; the constant factor 2 in the upper
bound (2 + o(1))

√
N can be improved via [2] (but this still leaves a small gap).

Let us now extend Theorem 9.7 to the case where the black box also supports the
generation of random group elements for a cost of one group operation. We first note
that having the algorithm generate random elements itself by computing zα for random
z ∈ Z/NZ does not change the lower bound significantly if only a small number of random
elements are used; this applies to all of the algorithms we have considered.

Corollary 9.9. Let G be a cyclic group of prime order N . Every generic Monte Carlo
algorithm for the discrete logarithm problem in G that uses o(

√
N/ logN) random group

elements uses at least (1 + o(1))
√
N group operations.

This follows immediately from Theorem 9.7, since a Monte Carlo algorithm is required
to succeed with probability bounded above 1/2. In the Pollard-ρ algorithm, assuming it
behaves like a truly random walk, the number of steps required before the probability of a
collision exceeds 1/2 is

√
2 log 2 ≈ 1.1774, so there is again only a small gap in the constant

factor between the lower bound and the upper bound.
In the case of a Las Vegas algorithm, we can obtain a lower bound by supposing that the

algorithm terminates as soon as it finds a non-trivial collision (in the proof, this corresponds
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to a nonzero Fij with Fij(t) = 0). Ignoring the O(logN) additive term, this occurs within m
steps with probability at most m2/(2p). Summing over m from 1 to

√
2p and supposing

that the algorithm terminates in exactly m steps with probability (m2− (m−1)2)/(2p), the
expected number of steps is 2

√
2p/3 + o(

√
p).

Corollary 9.10. Let G be a cyclic group of prime order N . Every generic Las Vegas
algorithm for the discrete logarithm problem in G that generates an expected o(

√
N/ logN)

random group elements uses at least (2
√

2/3 + o(1))
√
N expected group operations.

Now let us consider a generic algorithm that generates a large number of random ele-
ments, say R = N1/3+δ for some δ > 0. The cost of computing zα for R random values
of z can be bounded by 2R + O(N1/3). If we let e = dlgN/3e and precompute cα, c2eα,
and c22eα for c ∈ [1, 2e], we can then compute zα for any z ∈ [1, N ] using just 2 group
operations. We thus obtain the following corollary, which applies to every generic group
algorithm for the discrete logarithm problem.

Corollary 9.11. Let G be a cyclic group of prime order N . Every generic Las Vegas
algorithm for the discrete logarithm problem in G uses an expected Ω(

√
N) group operations.

In fact, we can be more precise: the implied constant factor is at least
√

2/2.
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