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25 Fermat’s Last Theorem

In this final lecture we give an overview of the proof of Fermat’s Last Theorem. Our goal is
to explain what Andrew Wiles [21], with the assistance of Richard Taylor [19], proved, and
why it implies Fermat’s Last Theorem. This implication is a consequence of earlier work by
several mathematicians, including Richard Frey, Jean-Pierre Serre, and Ken Ribet. We will
say very little about the details of Wiles’ proof, which are beyond the scope of this course,
but we will provide references for those who wish to learn more.

25.1 Fermat’s Last Theorem

In 1637, Pierre de Fermat famously wrote in the margin of a copy of Diophantus’ Arithmetica
that the equation

xn + yn = zn

has no integer solutions with xyz 6= 0 and n > 2, and claimed to have a remarkable proof
of this fact. As with most of Fermat’s work, he never published this claim (mathematics
was a hobby for Fermat, he was a lawyer by trade). Fermat’s marginal comment was
apparently discovered only after his death, when his son Samuel was preparing to publish
Fermat’s mathematical correspondence, but it soon became well known and is included as
commentary in later printings of Arithmetica.

Fermat did prove the case n = 4, using a descent argument. It then suffices to consider
only cases where n is an odd prime, since if p|n and (x0, y0, z0) is a solution to xn+yn = zn,
then (x

n/p
0 , y

n/p
0 , z

n/p
0 ) is a solution to xp + yp = zp.

A brief chronology of the progress made toward proving Fermat’s Last Theorem prior to
Wiles’ work is listed below below.

1637 Fermat makes his conjecture and proves it for n = 4.
1753 Euler proves FLT for n = 3 (his proof has a fixable error).
1800s Sophie Germain proves FLT for n - xyz for all n < 100.
1825 Dirichlet and Legendre complete the proof for n = 5.
1839 Lamé addresses n = 7.
1847 Kummer proves FLT for all primes n - h(Q(ζn)), called regular primes.

This leaves 37, 59, and 67 as the only open cases for n < 100.
1857 Kummer addresses 37, 59, and 67, but his proof has gaps.
1926 Vandiver fills the gaps and addresses all irregular primes n < 157.
1937 Vandiver and assistants handle all irregular primes n < 607.
1954 Lehmer, Lehmer, and Vandiver introduce techniques better suited to

mechanical computation and use a computer to address all n < 2521.
1954-1993 Computers verify FLT for all n < 4, 000, 000.

All of the results above are based on work in algebraic number theory, none of it uses
elliptic curves.1 The first person to suggest a connection between elliptic curves and Fermat’s
Last Theorem was Yves Hellegouarch. In his 1972 doctoral thesis [7], Hellegouarch associates

1Work in this direction continued even after FLT was proved. We now know that the Kummer-Vandiver
conjecture p - h(Q(ζp)

+) holds for p ≤ 231 [6]. This conjecture is a key ingredient to approaches to proving
FLT using algebraic number theory (in particular, the theory of cyclotomic fields); see [20, Ch. 9] for details.
We still do not know if the Kummer-Vandiver conjecture is true or not (but we do know FLT is true).

Lecture by Andrew Sutherland



to any non-trivial solution (a, b, c) of xp + yp = zp, with p an odd prime, the elliptic curve

Ea,b,c : y2 = x(x− ap)(x+ bp).

Without loss of generality we assume gcd(a, b, c) = 1, which implies that a, b, c must be
pairwise relatively prime, and that a ≡ 3 mod 4 and b ≡ 0 mod 2 (we can always swap a
and b and/or multiply both sides by −1 in order to achieve this). Proving Fermat’s Last
Theorem then amounts to showing that no such elliptic curve Ea,b,c can exist.

Hellegouarch did not make much progress with this, but in 1984 Gerhard Frey suggested
that the elliptic curve Ea,b,c, if it existed, could not possibly be modular [5]. Shortly there-
after, Jean-Pierre Serre [15] reduced Frey’s conjecture to a much more precise statement
about modular forms and Galois representations, known as the epsilon conjecture, which
was proved by Ken Ribet a few years later [13]. With Ribet’s result in hand, it was then
known that the modularity conjecture, which states that every elliptic curve over Q is mod-
ular, implies Fermat’s Last Theorem: it guarantees that Ea,b,c, and therefore the solution
(a, b, c) to xp + yp = zp, cannot exist. At that time no one expected the modularity con-
jecture to be proved any time soon; indeed, the fact that it implies Fermat’s Last Theorem
was taken as evidence of how difficult it would be to prove the modularity conjecture.

25.2 A strange elliptic curve

To get a sense of what makes the elliptic curve Ea,b,c so strange that one might question its
very existence, let us compute its discriminant:

∆(Ea.b,c) = −16(0− ap)2(0 + bp)2(ap + bp)2 = −16(abc)2p.

As explained in the last lecture, the definition of the L-series of an elliptic curve E requires
us to determine the minimal discriminant of E its reduction type at each prime dividing
the minimal discriminant (additive, split multiplicative, or non-split multiplicative) at each
prime which divide it. It turns out that the discriminant ∆ is not quite minimal, the minimal
discriminant is

∆min(Ea,b,c) = 2−8(abc)2p,

(assuming p > 3, which we know must be the case), which differs from ∆ only at 2.
On the other hand, the conductor of Ea,b,c is much smaller than its minimal discriminant.

Recall from the previous lecture that for odd primes ` an elliptic curve E : y2 = f(x) can
have additive reduction at ` only if the cubic f ∈ Z[x] has a triple root modulo `. This is
clearly not the case for the curve Ea,b,c : y2 = f(x) = x(x− ap)(x+ bp), since 0 is always a
root modulo `, but a and b are relatively prime and cannot both be divisible by `, so 0 is
not a triple root. One can also show that Ea,b,c does not have additive reduction at 2. This
implies that Ea,b,c is semistable, so Its conductor is the squarefree integer

NEa,b,c =
∏
`|abc

`,

which we note is divisible by 2 (since b is).
For the elliptic curve Ea,b,c the ratio ∆a,b,c/Na,b,c grows exponentially with p. But it is

very unusual (conjecturally impossible) for the minimal discriminant of an elliptic curve to
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be so much larger than its conductor. Szpiro’s conjecture [17], which is closely related to
the ABC conjecture,2 states that we for every ε > 0 there is a constant cε such that

∆min(E) ≤ cεN6+ε
E

for every elliptic curve E/Q. This cannot possibly be true for Ea,b,c if p is sufficiently large.
This does not imply that Ea,b,c cannot be modular, but it suggests that there is something
very strange about this elliptic curve (so strange that one might expect it cannot exist).

25.3 Galois representations

Let E be an elliptic curve over Q, let ` be a prime, and letK := Q(E[`]) be its `-torsion field,
the extension of Q obtained by adjoining the coordinates of all the points in E[`] to Q. The
fieldK is a Galois extension of Q (it is either the splitting field of the `th division polynomial,
or a quadratic extension of it), and its Galois group acts on the `-torsion subgroup E[`] via
its action on the coordinates of each point. This yields a group representation

ρ : Gal(K/Q)→ Aut(E[`]) ' GL2(Z/`Z),

that maps each σ ∈ Gal(K/Q) to the automorphism of E[`] ' Z/`Z ⊕ Z/`Z given by ap-
plying σ to the coordinates of each `-torsion point (all of which lie in K = Q(E[`]), by
definition). We consider two representations ρ, ρ′ : Gal(K/Q) → GL2(Z/`Z) to be isomor-
phic if there exists A ∈ GL2(Z/`Z) such that ρ′(σ) = Aρ(σ)A−1 for all σ ∈ Gal(K/Q), in
which case we write ρ ' ρ′.

Let S be the finite set of primes consisting of ` and the primes of bad reduction for E.
Every prime p 6∈ S is unramified in K. As explained in Lecture 20, this means that the
OK-ideal generated by p factors into a product of distinct prime ideals:

pOK = p1 · · · pr.

The Galois group Gal(K/Q) acts transitively on the set {p|p} := {p1, . . . , pr}, and for each
prime ideal p|p we have a corresponding decomposition group

Dp := {σ ∈ Gal(K/Q) : σ(p) = p}

equipped with an isomorphism

ϕ : Dp
∼−→ Gal(Fp/Fp)

σ 7→ σ̄

where Fp := OK/p is the residue field at p and the automorphism σ̄ is defined by σ̄(x̄) = σ(x),
where x̄ denotes the image of x ∈ OK in the quotient OK/p = Fp. The Galois group
Gal(Fp/Fp) is cyclic, generated by the p-power Frobenius automorphism πp : x 7→ xp, and
we define the Frobenius element

Frobp := ϕ−1(πp) ∈ Dp ⊆ Gal(K/Q).

2The ABC conjecture states that for all ε > 0 there is a constant cε such that only finitely many integer
solutions to a + b = c satisfy rad(abc)1+ε < cε, where rad(abc) denotes the squarefree part of abc. This is
equivalent to a modified version of Szpiro’s conjecture in which one replaces ∆min(E) with max(|A|3, B2),
where A and B are the coefficients in a short Weierstrass equation for E : y2 = x3 + Ax + B. Mochizuki
announced a proof of the ABC conjecture in 2012 that was finally published in 2021, but as of this writing,
most number theorists do not consider the ABC conjecture to have been proved.
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Different choices of p|p yield conjugate Frobp (and every conjugate of Frobp arises for p|p),
and we let Frobp denote this conjugacy class; as an abuse of terminology we may speak of
the Frobenius element Frobp as an element of Gal(K/Q) representing this conjugacy class,
with the understanding that Frobp is determined only up to conjugacy.

Thus for each prime p 6∈ S we get a Frobenius element Frobp ∈ Gal(K/Q), and may
consider its image Ap := ρ(Frobp) ∈ GL2(Z/`Z) under the Galois representation ρ. The
characteristic polynomial of Ap (which depends only on the conjugacy class of Frobp) is

det(λI −Ap) = λ2 − (trAp)λ+ detAp,

with
trAp ≡ ap mod ` and detAp ≡ p mod `.

Here ap := p + 1 − #Ep(Fp) is the trace of the Frobenius endomorphism of the reduction
Ep/Fp of E modulo p, equivalently, the pth coefficient in the Dirichlet series of the L-function
LE(s) =

∑
n≥1 ann

−s of the elliptic curve E.
For any positive integer n we can similarly consider the Galois representation

ρ : Gal(Q(E[`n])/Q)→ Aut(E[`n]) ' GL2(Z/`nZ).

For primes p 6∈ S with 4
√
p ≤ `n, the value of the integer ap ≡ tr ρ(Frobp) mod `n is uniquely

determined. Note that this holds no matter which auxiliary prime ` we pick.
The discussion above applies not only to Q(E[`n]), but to any Galois extension K of Q

containing Q(E[`n]). Even if the extension K/Q is ramified at primes outside of S, the
image of σ ∈ Gal(K/Q) under ρ depends only on the restriction of the automorphism σ to
Q(E[`n]), so given a Galois representation ρ(Gal(K/Q) → Aut(E[`n]) ' GL2(Z/`nZ) we
can determine ρ(Frobp) ∈ GL2(Z/`nZ) up to conjugacy. Here we use Frobp ∈ Gal(K/Q)
to denote any element whose restriction to Gal(Q(E[`n])/Q) lies in the conjugacy class
represented by the Frobenius element Frobp ∈ Gal(Q(E[`n])/Q). The conjugacy class of
ρ(Frobp) in GL2(Z/`nZ), and in particular its trace, is independent of this choice.

We now define the `-adic Tate module

T`(E) := lim←−
n

E[`n]

as the projective limit of the inverse system

E[`]
[`]←− E[`2]

[`]←− · · · [`]←− E[`n
[`]←− E[`n+1]

[`]←− · · · ,

whose the connecting homomorphisms are multiplication-by-` maps. Elements of T`(E) are
infinite sequences of points (P1, P2, P3, . . .) with Pn ∈ E[`n] such that `Pn+1 = Pn.

We now let GQ := Gal(Q/Q) and define the `-adic Galois representation

ρE,` : GQ → Aut(T`(E)) ' GL2(Z`),

where Z` = lim←−Z/`nZ is the ring of `-adic integers, which contains Z as a subring.3 Each
σ ∈ GQ acts on (P1, P2, P3, . . .) ∈ T` via its action on the coordinates of each Pn ∈ E[`n].

3You can view elements of Z` as infinite sequences of integers (a1, a2, a3, . . .) with an ≡ an+1 mod `n, and
ring operations defined coordinate-wise. We embed Z in Z` via the map a 7→ (a, a, a, . . .). Note that Z` has
characteristic 0 but comes equipped with reduction maps to the positive characteristic rings Z/`nZ.
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For primes p 6∈ S we now use Frobp ∈ GQ to denote an element whose restriction to
Gal(Q([`n])/Q) is conjugate to Frobp ∈ Gal(Q(E[`n])/Q) for each n ≥ 1; this amounts
to choosing a compatible sequence of Frobenius elements Frobp,n ∈ Gal(Q(E[`n])/Q) such
that Frobp,n is the restriction of Frobp,n+1 to Q(E[`n]). The conjugacy class of ρ(Frobp) in
GL2(Z`) is independent of these choices; in particular its trace in Z` is well defined.

We then have tr ρE,`(Frobp) = ap, as elements of Z ⊆ Z`. The representation ρE,` thus
determines the coefficients ap of the L-series LE(s) at all primes p 6∈ S. By the Tate-Faltings
Theorem (see Theorem 24.38), this determines E up to isogeny, and therefore determines
the entire L-function LE(s), including the values of ap for p ∈ S.

We also have the mod-` Galois representation

ρE,` : GQ → Aut(E[`]) ' GL2(Z/`Z),

which is equivalent to composing ρE,` with the map from GL2(Z`) to GL2(Z/`Z) that reduces
each matrix coefficient modulo `.

25.4 Serre’s modularity conjecture

Let us forget about elliptic curves for a moment and consider an arbitrary4 `-adic Galois
representation ρ : GQ → GL2(Z`) with ` > 3 prime. We say that ρ is modular (of weight k
and level N), if there is a modular form fρ =

∑
anq

n in Sk(Γ1(N)) with an ∈ Z such that5

tr ρ(Frobp) = ap

for all primes p - `N (if ρ = ρE,` and N = NE this excludes the same finite set of primes S
as the previous section). Similarly, if we have a mod-` representation ρ : GQ → GL2(Z/`Z),
we say that ρ is modular if

tr ρ(Frobp) ≡ ap mod `

for all primes p - `N .
Let c ∈ GQ be the automorphism of Q ⊆ C corresponding to complex conjugation. The

automorphism c has order 2, so det ρ(c) = ±1. We say that a Galois representation ρ is
odd when det ρ(c) = −1. This is necessarily the case if ρ = ρE,` is a Galois representation
associated to an elliptic curve. One way to see this is to base change E to C and view EC as
isomorphic to a torus C/L for some lattice L = [1, τ ]. For a suitable choice of basis (P,Q) for
the `n-torsion subgroup of C/L in which P has real coordinates, complex conjugation fixes P
and sends Q to −Q (this is easy to see when re τ = 0 and holds in general). Since we already
know that every f =

∑
anq

n in Snew
2 (Γ0(N)) with an ∈ Z gives rise to an elliptic curve (see

Theorem 24.37), this constraint necessarily applies to Galois representations associated to
modular forms of weight 2 with integral q-series.

We want to impose a further constraint on the Galois representations we shall consider
that is not always satisfied by the representation ρE,` associated to an elliptic curve E/Q,
but usually is (always for ` > 163). We call a Galois representation ρ : GQ → GL2(Z/`Z)
irreducible if its image does not fix any of one-dimensional subspaces of (Z/`Z)2; equivalently,

4As profinite groups, both GQ = Gal(Q/Q) and GL2(Z`) are topological groups and we always require
`-adic Galois representation to be continuous with respect to this topology; this is automatically true for
the representations ρE,` of interest to us.

5In the previous lecture we focused on Sk(Γ0(N)), which suffices for everything we need in the sections
that follow (and we only need k = 2), but in order to state Serre’s conjecture we temporarily work in greater
generality; note that Γ1(N) ⊆ Γ0(N) implies Sk(Γ0(N)) ⊆ Sk(Γ1(N)).
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its image is not conjugate to a group of upper triangular matrices in GL2(Z/`Z). For an
elliptic curve E/Q, the mod-` Galois representation ρ̄E,` is irreducible if and only if E does
not admit a rational `-isogeny. Mazur’s isogeny theorem [11] implies that this necessarily
holds for ` 6∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163} (the cases 19, 43, 67, 163 can arise only
when E has complex multiplication).

In 1975 Serre made the following remarkable conjecture, which he refined in [15]. This
conjecture is now a theorem, proved in 2008 by Khare and Wintenberger [8, 9], but this work
came long after the proof of Fermat’s Last Theorem (and built on the modularity lifting
techniques used to prove it).

Conjecture 25.1 (Serre’s modularity conjecture). Every odd irreducible Galois representa-
tion ρ̄ : GQ → GL2(Z/`Z) is modular.6

Serre gave an explicit recipe for what the optimal weight k(ρ̄) and level N(ρ̄) of the
corresponding modular form should be. Given a newform f ∈ Snew

2 (Γ0(N)) with Fourier
coefficients an ∈ Z, the Eichler-Shimura Theorem (see Theorem 24.37) gives us a corre-
sponding elliptic curve E/Q whose mod-` Galois representation ρE,` is modular of weight 2
and level N = NE , and ρ̄E,` will typically also be irreducible. The weight 2 agrees with
the optimal weight k(ρ̄E,`) conjectured by Serre (at least when ` - NE), but the optimal
level N(ρ̄E,`) may properly divide NE . In certain (rare) circumstances, distinct newforms of
weight 2 with different levels may have Fourier coefficients an that are congruent modulo `.

The mod-` Galois representation associated to the “strange” elliptic curve Ea,b,c arising
from a Fermat solution a` + b` = c` gives rise to one of these rare circumstances. For an
irreducible mod-` Galois representations ρ̄E,` arising from a semistable elliptic curve E/Q,
Serre’s optimal level N(ρ̄E,`) is a product of primes p for which vp(∆min(E)) 6≡ 0 mod `,
where vp(·) denotes the p-adic valuation.

For the elliptic curve Ea,b,c we have

NEa,b,c =
∏
p|abc

p, ∆min(Ea,b,c) = 2−8(abc)2`,

which means that for every odd prime p|NE we have vp(∆min(Ea,b,c)) ≡ 0 mod `, in which
case Serre’s optimal level is N(ρ̄Ea,b,c,`) = 2. But there are no (nonzero) modular forms
of weight 2 and level 2, because dimSnew

2 (Γ1(2)) = dimSnew
2 (Γ0(2)) = g(X0(2)) = 0. We

must have ` > 163, since Fermat’s Last Theorem has long been known for ` ≤ 163, so Ea,b,c
cannot admit a rational `-isogeny, by Mazur’s isogeny theorem, which means that ρ̄Ea,b,c,`
must be irreducible. Thus if Ea,b,c is modular, then ρ̄Ea,b,c,` represents a counterexample
to Serre’s conjecture. Serre’s epsilon-conjecture, proved by Ribet in 1986, implies that this
cannot happen. Below is a form of Ribet’s theorem [13] that suffices to prove this.

Theorem 25.2 (Ribet). Let ` be prime, let E be an elliptic curve of conductor N = mN ′,
where m is the product of all primes p|N such that vp(N) = 1 and vp(∆min(E)) ≡ 0 mod `.
If E is modular and ρ̄E,` is irreducible, then ρ̄E,` is modular of weight 2 and level N ′.

Corollary 25.3. The elliptic curve Ea,b,c is not modular.
6In fact Serre made his conjecture for all odd irreducible representations ρ : GQ → GL2(F`n), which

includes the special case considered here with GL2(Z/`Z) ' GL2(F`).
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25.5 The modularity lifting theorem

The final and by far the most difficult step to proving Fermat’s Last Theorem is to show that
if the elliptic curve Ea,b,c exists, then it is modular. Andrew Wiles, with the assistance of
Richard Taylor,7 proved the stronger statement that every semistable elliptic curve over Q
is modular (recall that Ea,b,c is semistable).

A key element of Wiles’ proof is a technique now known as modularity lifting. Let E be
an elliptic curve over Q and let ` be a prime. Wiles uses modularity lifting to show that if
the mod-` Galois representation ρE,` of semistable elliptic curve E/Q is modular, then the
`-adic representation ρE,` is also modular, which in turn implies that E is modular.

Given a representation ρ0 : GQ → GL2(Z/`Z), a representation ρ1 : GQ → GL2(Z`)
whose reduction modulo ` is equal to ρ0 is called a lift of ρ0. More generally, if R is a
suitable ring8 with a reduction map to Z/`Z, and ρ1 : GQ → GL2(R) is a representation
whose reduction is equal to ρ0, then we say that ρ1 is a lift of ρ0 (to R). Two lifts of ρ0 are
said to be equivalent if they are conjugate via an element in the kernel of the reduction map
from GL2(R) to GL2(Z/`Z). A deformation of ρ0 is an equivalence class of lifts of ρ0 to the
ring R, which is sometimes called the deformation ring.

Building on work by Mazur, Hida, and others that established the existence of certain
universal deformations ρT : GQ → GL2(T), where T is a certain Hecke algebra, Taylor and
Wiles were able to show that if ρ0 is modular, then every lift of ρ0 satisfying a specified
list of properties is modular (this result and generalizations of it are now known as “R =
T” theorems), and Wiles was able to show that this list of properties is satisfied by the
representation ρE,` associated to a semistable elliptic curve E/Q.

We are intentionally glossing over a massive amount of detail that is beyond the scope
of this course. We refer the interested reader to [3], which contains not only a detailed
overview of the proof, but many chapters devoted to the background necessary to understand
these details, and also the lecture notes from 2009-2010 Modularity lifting seminar held at
Stanford [2] which covers refinements of the Taylor-Wiles method and subsequent results.

Theorem 25.4 (Taylor-Wiles). Let E/Q be a semistable elliptic curve. If ρE,` is modular,
then ρE,` is also modular (and therefore E is modular).

25.6 Proof of Fermat’s Last Theorem

It remains only to find a modular representation ρ0 : GQ → GL2(Z/`Z) that we can lift to
ρE,`. The obvious candidate is ρE,`, for some suitable choice of `. It is not clear that proving
the modularity of ρE,` modular is necessarily any easier than proving the modularity of ρE,`,
but thanks to work of Langlands and Tunnel on a special case of Langlands’ Reciprocity
Conjecture [3, Ch. 6], we have the following result for ` = 3.

Theorem 25.5 (Langlands-Tunnel). Let E be an elliptic curve over Q. If ρE,3 is irreducible,
then it is modular.

The one remaining difficulty is that ρE,3 is need not be irreducible; indeed there are
infinitely many semistable elliptic curves E/Q that admit a rational 3-isogeny, and for these
curves ρ̄E,3 is not irreducible. However, if E is semistable and ρE,3 is reducible then ρE,5
must be irreducible. This follows from the fact that if neither ρ̄E,3 nor ρ̄E,5 is irreducible

7Wiles’ retracted his initial proof due to a gap that was found. Richard Taylor helped Wiles to circumvent
this gap, which was the last critical step required to obtain a complete proof; see [4] for an accessible account.

8A complete local Noetherian ring with residue field F`.
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then E admits both a rational 3-isogeny and a rational 5-isogeny; the cyclic group of order 15
generated by their kernels is then the kernel of a rational 15-isogeny, but this cannot be the
case if E is semistable.

Theorem 25.6. No semistable elliptic curve E/Q admits a rational 15-isogeny.

Proof. Let E/Q be an elliptic curve that admits a rational 15-isogeny. Let 〈P 〉 ⊆ E(Q) be
the kernel of this isogeny, which we note is necessarily cyclic. The pair (E, 〈P 〉) corresponds
to a non-cuspidal Q-rational point on X0(15), the modular curve that parameterizes Q-
isomorphism classes of 15-isogenies. The modular curve X0(15) is a smooth projective curve
of genus 1, and it has a rational point (take the cusp at infinity, for example), so it can be
viewed as an elliptic curve. A minimal Weierstrass model for X0(15) is given by

X0(15) : y2 + xy + y = x3 + x2 − 10x− 10.

Additional information about this curve can be found on its home page in the LMFDB [10].
This information includes the fact that X0(15) has rank 0 and a torsion subgroup of order 8.
Its 8 rational points include 4 cusps and 4 non-cuspidal points that represent Q-isomorphism
classes (E, 〈P 〉) of elliptic curves E/Q that admit a rational 15-isogeny with kernel 〈P 〉. None
of these elliptic curves E has j-invariant 0 or 1728, so each isomorphism class is a family of
quadratic twists. Any family of quadratic twists of elliptic curves over Q contains a minimal
representative whose conductor divides the conductor of all others; for the 4 non-cuspidal
points on X0(15) these minimal quadratic twists all have conductor 50 = 2 ·52 (you can find
a list of them and the 15-isogenies they admit here). None of these curves is semistable,
since 50 is not squarefree, nor are any of their quadratic twists. The theorem follows.

There is unfortunately no analog of the Langlands-Tunnel theorem for ` = 5. Indeed,
the case ` = 3 is quite special: the group GL2(Z/3Z) is solvable, which is not true for any
prime ` > 3 (and ` = 2 has other problems). So we would seem to be stuck. But Wiles
cleverly proved the following result, which is now known as the three-five trick.

Theorem 25.7 (Wiles). Let E/Q be a semistable elliptic curve for which ρE,5 is irreducible.
There exists a semistable elliptic curve E′/Q such that

• ρE′,3 is irreducible,

• ρE′,5 ' ρE,5.

Now we are in business.

Theorem 25.8 (Wiles). Let E/Q be a semistable elliptic curve. Then E is modular.

Proof. There are two cases. If ρE,3 is irreducible then:

• ρE,3 is modular, by the Langlands-Tunnel theorem,

• ρE,3 is modular, by the modularity lifting theorem,

• E is modular, since fE = fρE,3 .

On the other hand, if ρE,3 is reducible, then:

• ρE,5 is irreducible, because no semistable E/Q admits a rational 15-isogeny,

• there exists a semistable E′/Q with ρE′,3 irreducible and ρE′5 ' ρE,5, by the 3-5 trick,
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• ρE′,3 is modular, by the Langlands-Tunnel theorem,

• ρE′,3 is modular, by the modularity lifting theorem,

• E′ is modular, since fE′ = fρE′,3 ,

• ρE′,5 and therefore ρE′,5 is modular, since fρE′,5 = fE′ ,

• ρE,5 ' ρE′,5 is modular,

• ρE,5 is modular, by the modularity lifting theorem,

• E is modular, since fE = fρE,5 .

Q.E.D.

Corollary 25.9. xn + yn = zn has no integer solutions with xyz 6= 0 for n > 2.

References

[1] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves
over Q: wild 3-adic exercises, Journal of the American Mathematical Society 14 (2001),
843–939.

[2] B. Baran, R. Bellovin, B. Conrad, S. Dasgupta, B. Levin, S. Lichtenstein, M. Lipnowski,
A. Paulin, N. Mok, A. Snowden, D. Trotabas, A. Venkatesh, and M. Weissman, Modu-
larity lifting seminar , lecture notes from Stanford seminar, 2009–2010.

[3] G. Cornell, J.H. Silverman, G. Stevens, Modular forms and Fermat’s Last Theorem,
Springer, 1998.

[4] G. Faltings, The proof of Fermat’s last theorem by R. Taylor and A. Wiles, Notices of
the American Mathematical Society 42 (1995), 743–746.

[5] G. Frey, Links between stable elliptic curves and certain diophantine equations, Annales
Universitatis Saraviensis. Series Mathematicae 1 (1986), 1–40.

[6] W. Hart, D. Harvey, and W. Ong, Irregular primes to two billion, Math. Comp. 86
(2017), 3031–3049.

[7] Y. Hellegouarch, Courbes elliptiques et équation de Fermat. Thèse, Besançon, (1972).

[8] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (I), Inventiones Mathe-
maticae 178 (2009), 485–586.

[9] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (II), Inventiones Math-
ematicae 178 (2009), 485–586.

[10] The LMFDB collaboration, The L-functions and Modular Forms Database, published
electronically at http://www.lmfdb.org, accessed May 19, 2021.

[11] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.

[12] J.S. Milne, Elliptic curves, BookSurge Publishers, 2006.

18.783 Spring 2021, Lecture #25, Page 9

http://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00370-8/
http://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00370-8/
http://math.stanford.edu/~conrad/modseminar/
http://math.stanford.edu/~conrad/modseminar/
http://link.springer.com/book/10.1007/978-1-4612-1974-3
http://www.ams.org/notices/199507/faltings.pdf
http://www.ams.org/mathscinet-getitem?mr=853387
https://arxiv.org/abs/1605.02398
http://link.springer.com/article/10.1007/s00222-009-0205-7
http://link.springer.com/article/10.1007/s00222-009-0206-6
www.lmfdb.org
http://www.lmfdb.org
https://link.springer.com/article/10.1007/BF01390348
http://www.jmilne.org/math/Books/ectext6.pdf


[13] K. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Inven-
tiones Mathematicae 100 (1990), 431–476.

[14] K. Ribet, Galois representations and modular forms, Bulletin of the AMS 32 (1995),
375–402.

[15] J.-P. Serre, Sur les représentationes modulaires de degré 2 de Gal(Q/Q), Duke Mathe-
matics Journal 54 (1987), 179–230.

[16] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer, 1994.

[17] L. Szpiro, Discriminant et conducteur des courbes elliptiques, in Séminaire sur les
Pinceaux de Courbe Elliptiques (Paris, 1988), Astérique 183 (1990), 7–18.

[18] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,
Mathematische Annalen 168 (1967), 149–156.

[19] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Annals of
Mathematics 141 (1995), 553–572.

[20] L. Washington, Cyclotomic fields, Springer, 1997.

[21] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Mathematics
141 (1995), 443-551.

18.783 Spring 2021, Lecture #25, Page 10

http://link.springer.com/article/10.1007/BF01231195
http://www.ams.org/journals/bull/1995-32-04/S0273-0979-1995-00616-6/S0273-0979-1995-00616-6.pdf
https://projecteuclid.org/euclid.dmj/1077305511
http://link.springer.com/book/10.1007/978-1-4612-0851-8
http://www.ams.org/mathscinet-getitem?mr=1065151
http://link.springer.com/article/10.1007/BF01361551
http://www.jstor.org/discover/10.2307/2118560?uid=3739808&uid=2134&uid=2&uid=70&uid=4&uid=3739256&sid=21106366699671
https://link.springer.com/book/10.1007/978-1-4612-1934-7
http://www.jstor.org/discover/10.2307/2118559?uid=3739808&uid=2&uid=4&uid=3739256&sid=21106366699671

	
	Fermat's Last Theorem
	Fermat's Last Theorem
	A strange elliptic curve
	Galois representations
	Serre's modularity conjecture
	The modularity lifting theorem
	Proof of Fermat's Last Theorem


