
18.783 Elliptic Curves Spring 2019

Problem Set #3 Due: 03/04/2019

Description

These problems are related to the material covered in Lectures 5-7.

Instructions: First do Problems 1 and 2, then pick one of Problems 3–5 to solve; finally,
complete Problem 6, which is a short survey. Your solutions are to be written up in latex
and submitted as a pdf-file with a filename of the form SurnamePset3.pdf via e-mail
to drew@math.mit.edu by noon on the date due.

Collaboration is permitted/encouraged, but you must identify your collaborators,
and any references not listed in the course syllabus. The first to spot each non-trivial
typo/error in the problem sets or lecture notes will receive 1-5 points of extra credit.

Problem 1. The discriminant of an elliptic curve (9 points)

Let E : y2 = x3 + Ax+ B be an elliptic curve over Q with A,B ∈ Z. For each prime p,
we can reduce the coefficients of E modulo p to get an equation that defines a curve Ep

over the finite field Fp. Prove that Ep defines a smooth projective curve (and therefore
an elliptic curve with a distinguished rational point (0 : 1 : 0) at infinity) if and only if p
does not divide the discriminant

∆(E) := −16(4A3 + 27B2).

(You may wonder why we use the leading coefficient −16 rather than 2, which would yield
an integer with the same property; this will be made clear in later lectures). Next, show
that one can have Q-isomorphic elliptic curves E and E′ defined by short Weierstrass
equations with integer coefficients such that ∆(E) is divisible by primes that do not
divide ∆(E′) (thus ∆(E) is not an isomorphism class invariant, and the set of primes
for which Ep is an elliptic curve depends on the model one chooses).

Problem 2. Vélus formulas (9 points)

Let E1/Q be the elliptic curve y2 = x3 − 21x + 47. Show that E1 admits a rational
isogeny φ : E1 → E2 of degree 3 whose kernel is generated by the point (1, 3

√
3) and use

Vélu’s formulas to compute an explicit equation for E2/Q and an explicit rational map

for the isogeny φ(x, y) =
(
u(x)
v(x) ,

s(x)
t(x) y

)
in standard form. Then compute φ(P ), where P

is the rational point (−2, 9) on E1 and verify that φ(P ) is a rational point on E2.

Problem 3. The torsion subgroup of E(Q) (79 points)

Let E be an elliptic curve over Q. The problem of determining the rational points on E
is a famously hard problem that is still unsolved. However, determining the rational
points of finite order is easy. In this problem you will design (but need not implement)
an efficient algorithm for doing so.

We shall assume that E is defined by a Weierstrass equation y2 = x3+Ax+B, where
A and B are integers. This assumption is not restrictive: we can always pick u ∈ Z so
that the isomorphic curve y2 = x3 + u4Ax+ u6B has integer coefficients.
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Let P = (x1, y1) be a point of finite order m > 0 in E(Q). Our first goal is to prove
that P must have integer coordinates. This was proved independently first by Nagell [4]
and then by Lutz [3] in the 1930’s and is the first half of the Nagell-Lutz Theorem. The
standard proof [5, §8.1] relies on a p-adic filtration, but in this problem you will give a
shorter and simpler proof that relies only on properties of the division polynomials. As
shown in lecture, for any integer n not divisible by m, the x-coordinate xn of the point
nP = (xn, yn) is given by xn = φn(x1)/ψ

2
n(x1) where

φn(x) = xn
2

+ · · · ,

ψ2
n(x) = n2xn

2−1 + · · · ,

with each ellipsis denoting lower order terms; see Problem 4 for the full definition of φn
and ψn, which depend on the curve coefficients A and B.

(a) Prove that for any positive integer n < m, if xn is an integer, then x1 must be an
integer. Use this to reduce to the case that m is prime.

(b) Prove that if m = 2 then P has integer coordinates.

(c) If m is an odd prime then x1 is a root of ψm(x) = mx(m
2−1)/2 + · · · ∈ Z[x]. Using

this, prove that x1 is an integer, and then show that y1 must also be an integer
(thus P has integer coordinates as claimed).

We now need a few facts about the image of the torsion subgroup under reduction modulo
a prime p of good reduction for E. So let ∆(E) := −16(4A3 +27B2) be the discriminant
of E, and let p be a prime that does not divide ∆. Reducing the coefficients A and B
modulo p then gives an elliptic curve Ep/Fp. Since we know that torsion points in E(Q)
have integer coordinates, we can always reduce the coordinates of such a point modulo p
to get the coordinates of a point in Ep(Fp).

(d) Prove that if P ∈ E(Q) has order m, then its reduction in Ep(Fp) has order m.
Deduce that the reduction map from E(Q) to Ep(Fp) is injective at torsion points.

We now recall Mazur’s theorem from Lecture 1, which tells us that the order of a
torsion point in E(Q) can be at most 12 (and cannot be 11). Our strategy is to pick a
prime p ≥ 11 of good reduction for E, find all the points of order less than or equal to
12 in Ep(Fp), and then use the algorithm from Problem 5 of Problem Set 2 to try and
lift these points to E(Q). As proved in part (d) of that problem, given a polynomial
f ∈ Z[x] and root x0 of f modulo p that is not also a root of f ′ modulo p, we can use
Hensel’s method to find a root r ∈ Z satisfying r ≡ x0 mod p or prove that no such r
exists in O(dM(logB)) time; here d = deg f and B is a bound on the absolute values of
its coefficients.

The first step is to find a prime p that does not divide the discriminant ∆. Doing
this by trial division is not fast enough to give a quasi-linear running time, so we need
to be a bit more clever. We will instead use an algorithm for fast simultaneous modular
reduction [2, Alg. 10.16]. to compute ∆ mod pi for the first several primes p1, · · · , pk
greater than 11, where k is chosen so that M = p1 · · · pk > ∆ (so we know that ∆ mod pi
is nonzero for some pi, we’ll just pick the least one).

This is accomplished using a product tree, a binary tree of integers whose bottom level
(the leaves of the tree) consists of the primes pi; for the sake of simplicity let us assume
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we round k up to a power of 2 so that we have a complete binary tree. Working our way
up from the leaves, we set the value of each internal node to the product of its children;
eventually we reach the root of the tree, which then has the value M = p1 · · · pk. We
then replace the root M with d = |∆| mod M , and for each of its children m1 and m2

we replace mi with di = d mod mi (which is |∆| mod mi). Recursively working our way
down the tree, we eventually get |∆| mod pi in the leaves.

In order to bound the complexity of our algorithm, we define

n := lg |A|+ lg |B|,

which represents the bit-size of the input, the elliptic curve E/Q given as y2 = x3+Ax+B
with A,B ∈ Z. Note that we then also have log |∆| = O(n).

(e) Prove that we can determine the least prime p ≥ 11 that does not divide ∆ in time
O(M(n) log n), and use the Prime Number Theorem to show that p = O(n). Feel
free to use our usual assumption that M(n) grows super-linearly (aM(b) ≤ M(ab)).

For each integer m > 1, define the polynomial fm ∈ Z[x] as follows:

fm(x) =


x3 +Ax+B if m = 2,

ψm/ψ2 if m > 2 is even,

ψm if m is odd,

where ψm denotes the mth division polynomial of the elliptic curve E : y2 = x3+Ax+B.

(f) Prove that if P = (x1, y1) ∈ E(Q) has finite order m not divisible by p then we have
fm(x1) = 0 mod p and f ′m(x1) 6= 0 mod p.

It follows that their exist suitable starting values x0 and z0 to which we can apply
the root-finding algorithm from Problem Set 2 (see Problem 5) to obtain an integer root
of fm(x) that is congruent to x0 modulo p. By part (c), this root must be equal to x1.
This still leaves the question of how to find such an x0. We know it must appear as the
x-coordinate of some point in Ep(Fp) of order m, so it suffices to find all such points for
all the values of m ≤ 12 permitted by Mazur’s theorem.

(g) Give an algorithm to enumerate all the points (x0, y0) ∈ Ep(Fp) in timeO(nM(log n)).

(h) Give an algorithm to construct the set S consisting of all points in Ep(Fp) of order at
most 12 in time O(nM(log n)), and prove that the cardinality of S is O(1) (meaning
it is bounded by a constant that does not depend on n).

(i) Prove that there is a bound H > 0 with logH = O(n) such that the coefficients of
fm all have absolute value bounded by H, for 2 ≤ m ≤ 12. You don’t need to give
an explicit value for H, just show that it exists and can be effectively computed.

(j) Using the O(dM(logH)) complexity bound of the root-finding algorithm (proved in
part (d) of Problem 5 on Problem Set 2), show that for any point Q ∈ S of order
m you can either find a point P ∈ E(Q) of order m that reduces to Q modulo p, or
prove that no such P exists1 in time O(M(n)).

1Note that not every point Q ∈ S is necessarily the reduction of a point P ∈ E(Q).
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(k) Conclude that you can enumerate the torsion points in E(Q) in O(M(n) log n) time.

It is worth noting that the algorithm you have just designed is asymptotically faster
than both of the algorithms given in [5]: one is based on the the Lutz–Nagell Theorem
[5, Thm. 8.7], which requires factoring ∆ and is not polynomial time, and the other uses
Doud’s algorithm [1] which is quasi-quadratic but not quasi-linear.2

(l) Now suppose we would like an algorithm that does not depend on Mazur’s result.
Explain how to modify the algorithm above to replace 12 with an alternative bound
(which may depend on E), and analyze the complexity of the resulting algorithm.

Problem 4. Computing division polynomials (79 points)

For integers n ≥ 0, define ψn ∈ Z[x, y,A,B] by

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

ψ2m =
1

2y
ψm(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m ≥ 2).

Let φ1 = x and ω1 = y, and for integers n > 1 define

φm = xψ2
m − ψm+1ψm−1,

ωm =
1

4y
(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1).

It is a straight-forward exercise (which you are not required to do) to show that these
polynomials have the form

φn(x) = xn
2

+ · · · ,

ωn(x, y) =

{
y(x3(n

2−1)/2 + · · · ) n odd,

x3n
2/2 + · · · n even,

ψn(x, y) =

{
nx(n

2−1)/2 + · · · n odd,

y(nx(n
2−4)/2 + · · · ) n even,

where each ellipsis denotes terms of lower degree in x.

In practical applications it is more convenient to work with the univariate polynomials

fn(x) =

{
ψn n odd,

ψn/ψ2 n even.

2Doud gives a quasi-cubic complexity bound in [1] but with fast arithmetic it is quasi-quadratic.
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Note that ψ2 = 2y, and it follows from the formulas above that fn does not depend on y.
If P = (x0, y0) is a point on the elliptic curve y2 = x3 + Ax + B with y0 6= 0 (so P is
not a 2-torsion point), then fn(x0) = 0 if and only if nP = 0. In this problem you will
develop an efficient algorithm to compute fn.

(a) Let F (x) = 4(x3+Ax+B). Using the recursion formulas for ψ2m and ψ2m+1, derive
recursion formulas for f2m and f2m+1 that involve fm−2, . . . , fm+2 and F . Note that
for f2m+1 you will need to distinguish the cases where m is odd and even.

(b) Show that for any k ≥ 3, if you are given the polynomials fk−3, . . . , fk+5 and F , you
can compute the polynomials f2k−3, . . . , f2k+5 (call this doubling), and you can also
compute the polynomials f2k+1−3, . . . , f2k+1+5 (call this doubling-and-adding).

(c) Implement an algorithm that, given a positive integer n, a prime p, and coefficients
A and B, computes the division polynomial fn ∈ Fp[x] for the elliptic curve E/Fp

defined by y2 = x3 +Ax+B, using a left-to-right binary exponentiation approach.
Here are a few tips, but you are free to use any design you like.

• Work in the polynomial ring Fp[x], which you can create in Sage by typing
R.<x>=PolynomialRing(GF(p)). Note that A and B are now scalars in
Fp, not variables. Precompute F = 4(x3 +Ax+B) ∈ Fp[x].

• You need an initial vector of division polynomials v = [fk−3, . . . , fk+5] to get
started. If the leading two bits of n are “11”, then let v = [f0, . . . , f8] and
k = 3. Otherwise, let [f1, . . . , f9] and k = 4 if the top three bits of n are “100”,
and let v = [f2, . . . , f10] and k = 5 if the top three bits of n are “101”.

• Implement a function that, given k, v = [fk−3, . . . , fk+5], F , and a bit b,
computes k′ = 2k + b and v = [fk′−3, . . . , fk′+5]. To perform left-to-right
binary exponentiation, call this function repeatedly, passing in the bits of n
starting from either 2 or 3 bits from in the top and working down to the low
order bit.

• To test your code, you can compare results with Sage, which already knows
how to compute fn, via

FF=GF(p); R.<x>=PolynomialRing(FF)
E=EllipticCurve([FF(A),FF(B)])
E.division_polynomial(n,x,0)

• Your program should be quite fast, but be careful not to test it with values
of n that are too large — the degree of fn is quadratic in n, so if n is, say, a
million, you would need several terabytes of memory to store fn.

(d) Analyze the asymptotic complexity (in terms of time and space) of your program as
a function of log p and n. Use M(b) to denote the time to multiply two b-bit integers.

(e) Modify your program so that it performs its computations modulo x7 (to compute
f(x) mod x7 in Sage use f.mod(xˆ7)). Now let A be the least prime greater than
the last two digits of your student ID, let B be the least prime greater than the first
two digits of your student ID, and let p = 65537. Let E/Fp be the elliptic curve
defined by y2 = x3 +Ax+B, and let n = N100 + 1, where N is the integer formed
by adding the last three digits of your student ID to 9000.
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(i) Use your modified program to compute fn mod x7 and record the result in
your problem set. Be sure to first test your program with smaller values of n
and verify the results with Sage (your answer to this question will be heavily
weighted when grading this problem, so please be careful).

(ii) Time your program using the timeit function in Sage.

Problem 5. Galois actions and `-isogenies (79 points)

Let k be a perfect field (so every extension of k is separable; this holds when char(k) = 0
or k is a finite field, for example), fix an algebraic closure k̄, and let E/k be an elliptic
curve. For each n ≥ 0 the field k(E[n]) obtained by adjoining the coordinates of every
point in the n-torsion subgroup E[n] := {P ∈ E(k̄) : nP = 0} is the n-torsion field
of E. For any point P = (x : y : z) ∈ E(k̄) and automorphism σ ∈ Gal(k̄/k) let
σ(P ) := (σ(x) : σ(y) : σ(z)).

(a) Show that for any P ∈ E(k̄) and σ ∈ Gal(k̄/k) we have σ(P ) ∈ E(k̄), and that for
all P,Q ∈ E(k̄) we have σ(P+Q) = σ(P )+σ(Q). Conclude that the map P 7→ σ(P )
defines a group action of Gal(k̄/k) on E(k̄) that commutes with addition, and that
each σ ∈ Gal(k̄/k) thus induces an automorphism of the group E(k̄).

(b) Show that the action of Gal(k̄/k) on E(k̄) restricts to an action on E[n]. Conclude
that k(E[n]) is a Galois extension of k.

(c) Give an explicit example of an elliptic curve E/k and a finite subgroup G ⊆ E(k̄)
for which the action of Gal(k̄/k) in E(k̄) does not restrict to an action on G; that
is, exhibit a point P ∈ G and an automorphism σ ∈ Gal(k̄/k) for which σ(P ) 6∈ G.
Now give an example (possibly the same one) where the field extension of k obtained
by adjoining the coordinates of every point P ∈ G is not even a Galois extension.

(d) Show that for any finite subgroup G of E(k̄) there is a separable isogeny φ : E → E′

defined over k with kernel G if and only if G is Galois stable, meaning that σ(P ) ∈ G
for all P ∈ G and σ ∈ Gal(k̄/k), and that in this case the field k(kerφ) obtained by
adjoining the coordinates of every point P ∈ kerφ to k is a Galois extension of k.

Let ` be an odd prime different from the characteristic of k.

(e) Show that Aut(E[`]) ' GL2(F`), and that the action of Gal(k̄/k) on E[`] induces
an injective group homomorphism ρ` : Gal(k(E[`])/k)→ GL2(F`). Use this to show
that the degree of the field extension k(E[`])/k is less than `4.

(f) Show that when k is a finite field the degree of k(E[`])/k is actually less than `2.

The isomorphism you proved in (e) is not unique; for the sake of concreteness, let us
view GL2(F`) as acting on column vectors by multiplication on the left.

(g) The `-division ψ`(x) of E has degree (`2 − 1)/2 (see Problem 4). Its splitting field
L is necessarily a subfield of the `-torsion field k(E[`]). Show that [k(E[`]) :L] ≤ 2.

(h) Show that [k(E[`]) :L] = 2 if and only if the image of ρ` contains −I ∈ GL2(F`).
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We say that E admits a rational `-isogeny if there exists an isogeny φ : E → E′ of degree
` that is defined over k.

(i) Show that whenever E admits a rational `-isogeny the `-division polynomial ψ`(x)
has a factor of degree (` − 1)/2. Does the converse hold? Show that if φ : E → E′

is a rational `-isogeny then the field extension k(kerφ)/k has degree less than `.

(j) Show that E admits a rational `-isogeny if and only if the image G` of Gal(k(E[`])/k)
in GL2(F`) fixes a linear subspace of F2

` , in which case G` is conjugate to a subgroup
of upper triangular matrices in GL2(F`) and the degree of k(E[`])/k is less than `3.

(k) Show that E has a rational point of order ` if and only if G` is conjugate to a
subgroup of matrices ( 1 ∗

0 ∗ ), in which case the degree of k(E[`])/k is less than `2.

(l) Let m be the number of rational `-isogenies admitted by E that have distinct kernels.
Show that m ∈ {0, 1, 2, `+1}, with m ≥ 2 if and only if G` is conjugate to a subgroup
of diagonal matrices in GL2(F`), and m = ` + 1 if and only if G` is conjugate to a
subgroup of scalar matrices in GL2(F`).

Problem 6. Survey (3 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,”
10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 =
“brutal”). Also estimate the time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Also, please rate each of the following lectures that you attended, according to the
quality of the material (1=“useless”, 10=“fascinating”), the presentation (1=“epic fail”,
10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”), and the novelty of
the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

2/25 Isogenies and division polynomials

2/27 Isogenies and endomorphisms

Feel free to record any additional comments you have on the problem sets or lectures.
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