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18 The CM torsor

Over the course of the last three lectures we have established an equivalence of categories
between complex tori C/L and elliptic curves E/C:

{lattices L ⊆ C}/∼
∼−→ {elliptic curves E/C}/∼

L 7−→ EL : y2 = 4x3 − g2(L)x− g3(L)

j(L) = j(EL)

in which homothetic lattices correspond to isomorphic elliptic curves, and we have

End(C/L) ' O(L) ' End(EL)

where the ring
O(L) := {α ∈ C : αL ⊆ L}

is necessarily equal to Z or an order O in an imaginary quadratic field. In the latter case,
which we will assume throughout this lecture, the elliptic curve EL is said to have complex
multiplication (CM) by O, and the lattice L is necessarily homothetic to an O-ideal.

If we fix the order O, the O-ideals L for which End(EL) ' O are precisely those for
which O(L) = O; we defined such O-ideals to be proper (note: O ⊆ O(L) always holds,
since L is an O-ideal, but in general O(L) be be larger than O).

The sets
{L ⊆ C : O(L) = O}/∼ ←→ {E/C : End(E) = O}/∼

are both in bijection with the ideal class group

cl(O) := {proper O-ideals a}/∼

where the equivalence relation on proper O-ideals is defined by

a ∼ b ⇐⇒ αa = βb for some nonzero α, β ∈ O

(note that a ∼ b if and only if a and b are homothetic as lattices).
Recalling that isomorphism classes of elliptic curves over an algebraically closed field are

identified by their j-invariants, we now define the set

EllO(C) = {j(E) : E is defined over C and End(E) = O},

and we then have a bijection of sets

cl(O)
∼−→ EllO(C)

[a] 7−→ j(Ea) = j(a).

As you will prove in Problem Set 9, the ideal class group cl(O) is finite, thus the set EllO(C)
is finite. Its cardinality is the class number h(O) = # cl(O). Remarkably, not only are the
sets cl(O) and EllO(C) in bijection, the set EllO(C) admits a group action by cl(O). In order
to define this action, and to gain a better understanding of what it means for an O-ideal to
be proper, we first introduce the notion of a fractional O-ideal.
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18.1 Fractional ideals

Definition 18.1. Let O be an integral domain with fraction field K. For any λ ∈ K×

and O-ideal a, the O-module b = λa := {λα : α ∈ a} is called a fractional O-ideal.1
Multiplication of fractional ideals b = λa and b′ = λa′ is defined in the obvious way:

bb′ := (λλ′)aa′,

where aa′ is the product of the O-ideals a and a′.2

Without loss of generality we can assume λ = 1/β for some β ∈ O (if λ = α/β, replace a
with αa), and in the case of interest to us, where O is an number field, we can assume λ = 1/b
for some positive integer b (if f ∈ Z[x] is the minimal polynomial of β then f(β) − f(0) is
divisible by β with (f(β)− f(0))/β = −f(0)/β ∈ O, and we can take b = ±f(0) > 0).

Fractional O-ideals that lie in O are O-ideals, and every O-ideal is a fractional O-ideal.
Note that O is itself an O-ideal, hence a fractional O-ideal, and it acts as the multiplicative
identity with respect to multiplication of fractional O-ideals. Fractional O-ideals b for which
there exists a fractional O-ideal b−1 such that bb−1 = O are said to be invertible. Not every
fractional O-ideal is invertible (the zero ideal never is, and in general there may be nonzero
fractional O-ideals that are not invertible). The set of invertible fractional O-ideals form a
group under multiplication (this is sometimes called the ideal group of O, even though its
elements are fractional O-ideals many of which are not O-ideals).

18.2 Norms

Let O be an order in an imaginary quadratic field K. We want to define the norm of
fractional O-ideal b = λa, a rational number that is the product of the norms of λ and a.
We first define the norm of a field element λ ∈ K×, and the norm of an O-ideal a.

Definition 18.2. Let K/k be a field extension and let λ ∈ K×. The multiplication-by-λ
map K → K is an invertible linear transformation Mλ ∈ GL(K) of K as a k-vector space.
The (field) norm and trace of α are defined by

NK/kλ := detMλ ∈ k× and TK/kλ := trMλ ∈ k.

One typically computes the norm and trace by fixing a basis for K as a k vector space and
writing Mλ as a matrix using this basis, but the norm and trace of Mλ do not depend on
the choice of basis. When K is a number field and k = Q it is common to simply write
N := NK/Q and T := TK/Q when the number field K is clear from context, but note that
for λ ∈ Q we have Nλ = λ[K:Q] and Tλ = [K : Q]λ, which depend on K, not just λ.

When K ' End0(E) is an imaginary quadratic field, Definition 18.2 coincides with our
definition of the (reduced) norm and trace of an element of End0(E) (see Definition 13.7).
When K is an imaginary quadratic field embedded in C we have Nα = αᾱ and Tα = α+ ᾱ,
where ᾱ denotes complex conjugation (equivalently, the action of the unique non-trivial
element of Gal(K/Q). Thus in this setting the complex conjugate

ᾱ = Tα− α = α̂

is the dual of α ∈ End0(E) = K ↪→ C.
1Some authors define fractional O-ideals to be finitely generated O-submodules of K. Every finitely

generated O-module in K is a fractional ideal under our definition, and when O is noetherian (which applies
to orders in number fields), the definitions are equivalent.

2One can also add fractional O-ideals via b+ b′ := {b+ b′ : b ∈ b, b′ ∈ b}, but we won’t need this.

18.783 Spring 2017, Lecture #18, Page 2

http://math.mit.edu/classes/18.783/2017/LectureNotes13.pdf#theorem.2.7


Definition 18.3. Let O be an order in a number field K and let a be a nonzero O-ideal.
The (absolute) norm of the ideal a is

Na := [O : a] = #O/a ∈ Z>0.

We can also interpret Na as the ratio of the volumes of fundamental parallelepipeds for a
and O, viewed as lattices in the Q-vector space K.

We now show that our two definitions of norm agree on principal O-ideals.

Lemma 18.4. Let α be a nonzero element of an order O in a number field K. Then

N(α) = |Nα|,

where (α) denotes the principal O-ideal generated by α.

Proof. The lemma follows from the fact that the determinant of Mα ∈ GL(K) ' GLn(Q)
can be interpreted as the signed volume of the fundamental parallelepiped of the lattice
(α) in the Q-vector space K ' Qn, where n = [K : Q] is the degree of K. Notice that
N(α) = [O : (α)] = [O : αO] = [OK : αOK ] depends only on α and K, not the order O
(N.B. this holds for principal ideals but not in general).

Warning 18.5. Given that the field norm is multiplicative and that we can view the ideal
norm as the absolute value of a determinant, it would be reasonable to expect the ideal
norm to be multiplicative. This is not always true. As an example, consider the ideal
a = [2, 2i] in the order O = [1, 2i], which has norm Na = [O : a] = 2. Then a2 = [4, 4i] and

Na2 = 8 6= 22 = (Na)2.

However, as we shall see, the ideal norm is multiplicative when a and b are both proper
O-ideals, and when one of a or b is a principal ideal.

Corollary 18.6. Let O be an order in a number field, let α ∈ O be nonzero, and let a be a
nonzero O-ideal. Then

N(αa) = NαNa.

Proof. N(αa) = [O : αa] = [O : a][a : αa] = [O : a][O : αO] = NaN(α) = NαNa.

This allows us to make the following definition.

Definition 18.7. Let b = 1
ba be a nonzero fractional ideal in an order O of a number field,

with b ∈ Z>0 (as above, we can always write b this way). The (absolute) norm of b is

Nb :=
Na

Nb
∈ Q×>0.

Corollary 18.6 ensures that this does not depend on the choice of b and a.

When b ⊆ O we can take b = 1, in which case this agrees with Definition 18.3.
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18.3 Proper and invertible fractional ideals

We now return to our original setting, where O is an order in an imaginary quadratic field.
Extending our terminology for O-ideals, for any fractional O-ideal b we define

O(b) := {α : αb ⊆ b},

and say that b is proper if O(b) = O. In this section we will show that b is proper if and
only if it b is invertible (there is a fractional O-ideal b−1 for which bb−1 = O). Let us first
note that for b = λa, whether b is proper or invertible depends only on the O-ideal a.

Lemma 18.8. Let O be an order in an imaginary quadratic field, let a be a nonzero O-ideal,
and let b = λa be a fractional O-ideal. Then a is proper if and only if b is proper, and a is
invertible if and only if b is invertible.

Proof. For the first statement, note that {α : αb ⊆ b} = {α : αλa ⊆ λa} = {α : αa ⊆ a}.
For the second, if a is invertible then b−1 = λ−1a−1, and if b is invertible then a−1 = λb−1,
since aa−1 = aλb−1 = bb−1 = O.

We now prove that the invertible O-ideals are precisely the proper O-ideals and give an
explicit formula for the inverse when it exists. Our proof follows the presentation in [1, §7].

Theorem 18.9. Let O be an order in an imaginary quadratic field and let a = [α, β] be an
O-ideal. Then a is proper if and only if a is invertible. Whenever a is invertible we have
aā = (Na), where ā = [ᾱ, β̄] and (Na) is the principal O-ideal generated by the integer Na;
the inverse of a is then the fractional O-ideal a−1 = 1

Na ā.

Proof. If a is invertible, then for any γ ∈ C we have

γa ⊆ a =⇒ γaa−1 ⊆ aa−1 =⇒ γO ⊆ O =⇒ γ ∈ O,

so O(a) ⊆ O, and therefore a is a proper O-ideal, since we always have O ⊆ O(a).
We now assume that a = [α, β] is a proper O-ideal and show that aā = (Na), which

implies a−1 = 1
Na ā. Let τ = β/α, so that a = α[1, τ ], and let ax2 + bx + c ∈ Z[x] be the

minimal polynomial of τ made integral by clearing denominators, with a > 0 minimal. The
fractional ideal [1, τ ] is homothetic to a, so O([1, τ ]) = O(a) = O, since a is proper.

Let O = [1, ω]. Then ω ∈ [1, τ ] and ω = m + nτ for some m,n ∈ Z; after replacing ω
with ω −m, we may assume ω = nτ . We also have ωτ ∈ [1, τ ], since [1, τ ] is an O-module,
so nτ2 ∈ [1, τ ], which implies that a|n, by the minimality of a (Gauss’s lemma implies that
we must have {f ∈ Z[x] : f(τ) = 0} = (ax2 + bc+ c)). We also have aτ [1, τ ] ⊆ [1, τ ] (since
aτ and aτ2 = −bτ − c lie in [1, τ ]), so aτ ∈ O([1, τ ]) = O = [1, nτ ], and we must have n = a
and O = [1, aτ ]. Thus

N(a) = [O : a] = [[1, aτ ] : α[1, τ ]] =
1

a
[[1, aτ ] : α[1, aτ ]] =

1

a
[O : αO] =

N(α)

a
.

We also have
aā = α[1, τ ]ᾱ[1, τ̄ ] = N(α)[1, τ, τ̄ , τ τ̄ ].

Using aτ2 + bτ + c = 0, we see that τ + τ̄ = −b/a, and τ τ̄ = c/a. We then have

aā = N(α)[1, τ, τ̄ , τ τ̄ ] =
N(α)

a
[a, aτ,−b, c] = Na[1, aτ ] = (Na)O = (Na)

as claimed, where we have used gcd(a, b, c) = 1 to get [a, aτ,−b, c] = [1, aτ ], and it follows
that a−1 = 1

Na ā.
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Corollary 18.10. The ideal class group cl(O) is the group of invertible fractional O-ideals
modulo its subgroup of principal fractional O-ideals (in particular cl(O) is a group).

Proof. Recall that cl(O) = {proper O-ideals}/∼, where ∼ denotes homethety. Let G be the
group of invertible fractional O-ideals and H its subgroup of principal fractional O-ideals.

Every invertible fractional O-ideal b = 1
ba is the product of an invertible principal frac-

tional O-ideal (1
b ) and an invertible O-ideal a, by Lemma 18.8. It follows that G/H consists

of all cosets aH, where a is any invertible, equivalently, proper O-ideal (by Theorem 18.9).
Every nonzero principal fractional O-ideal is invertible, since (α)−1 = (α−1), so H contains
every nonzero principal fractional O-ideal and for any two proper/invertible O-ideals a, b
we have a ∼ b if and only if aH = bH. It follows that cl(O) = G/H.

Corollary 18.11. Let O be an order in an imaginary quadratic field and let a and b be
invertible (equivalently, proper) fractional O-ideals. Then N(ab) = NaNb.

Proof. If a = 1
aa
′ and b = 1

bb
′ with a, b ∈ Z>0 and a′, b′ ⊆ O then N(ab) = N(a′b′)

NaNb , so it is
enough to consider the case where a and b are invertible O-ideals. We have

(N(ab)) = abab = abab = aabb = (Na)(Nb),

and it follows that N(ab) = NaNb, since Na,Nb,N(ab) ∈ Z>0.

18.4 The action of the ideal class group on CM elliptic curves

Let O be an order in an imaginary quadratic field. We are ready to define the action of
cl(O) on EllO(C) = {j(E) : E/C with End(E) = O}, which we will do by defining an action
of proper O-ideals on elliptic curves E/C with CM by O (up to isomorphism).

Every E/C with End(E) = O is isomorphic to Eb, for some proper O-ideal b. For any
proper O-ideal a we define the action of a on Eb via

aEb = Ea−1b (1)

(we Ea−1b rather than Eab because ab ⊆ b but b ⊆ a−1b). The action of the equivalence
class [a] on the isomorphism class j(Eb), is then defined by

[a]j(Eb) = j(Ea−1b), (2)

which we can also write as
[a]j(b) = j(a−1b),

which does not depend on the choice of a and b.
If a is a nonzero principal O-ideal, then the lattices b and a−1b are homothetic, and we

have aEb ' Eb. Thus the identity element of cl(O) acts trivially on EllO(C). For any proper
O-ideals a,b, and c we have

a(bEc) = aEb−1c = Ea−1b−1c = E(ba)−1c = (ba)Ec = (ab)Ec.

Thus we have a group action of cl(O) on EllO(C).
For any proper O-ideals a and b, we have [a]j(b) = j(a−1b) = j(b) if and only if b is

homothetic to a−1b, by Theorem 16.5, and in this case we have ab = λb for λ ∈ K×, and
then a = λO is principal. This implies that the action of cl(O) is not only faithful, it is free:
meaning that the identity [O] is the only element cl(O) that fixes any element of EllO(C).
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The fact that the sets cl(O) and EllO(C) have the same cardinality implies that the
action must also be transitive: if we fix any j0 ∈ EllO(C) the images [a]j0 of j0 under the
action of each [a] ∈ cl(O) must all be distinct, otherwise the action would not be free; there
are only #EllO(C) = # cl(O) possibilities, so the cl(O)-orbit of j0 is all of EllO(C).

A group action that is both free and transitive is said to be regular. Equivalently, the
action of a group G on a set X is regular if and only if for all x, y ∈ X there is a unique
g ∈ G for which gx = y. In this situation the set X is said to be a a G-torsor (or principal
homogeneous space) for G. We have thus shown that the set EllO(C) is a cl(O)-torsor.

If we fix a particular element x of a G-torsor X, we can then view X as a group that
is isomorphic to G under the map that sends y ∈ X to the unique element g ∈ G for
which gx = y. Note that this involves an arbitrary choice of the identity element x; rather
than thinking of elements of X as group elements, it is more appropriate to think of the
“differences” or “ratios” of elements of X as group elements. In the case of the cl(O)-torsor
EllO(C) there is an obvious choice for the identity element: the isomorphism class j(EO).
But when we reduce to a finite field Fq and work with the cl(O)-torsor EllO(Fq), as we shall
soon do, we cannot readily distinguish the element of EllO(Fq) that corresponds to j(EO),
and make an arbitrary choice.

18.5 The CM action via isogenies

To better understand the cl(O)-action on EllO(C) we now want to look at isogenies between
elliptic curves with CM by O; but first let us consider the situation more generally.

Let φ : E1 → E2 be an isogeny of elliptic curves over C, and let L1 and L2 be corre-
sponding lattices, so that E1 = EL1 and E2 = EL2 . By Theorem 17.4, there is a unique
α = αφ with αL1 ⊆ L2 such that the following diagram commutes

C/L1 C/L2

E(C) E′(C)

α

Φ1 Φ2

φ

As we are only interested in lattices up to homethety and elliptic curves up to isomorphism,
we can replace L1 with the homethetic lattice αL1 and E1 by an isomorphic elliptic curve so
that α = 1 and the isogeny φ is induced by the inclusion L1 ⊆ L2; note that this amounts to
composing φ with an isomorphism and does not change its degree. Up to an isomorphism of
elliptic curves and a homethety of lattices, every isogeny φ : E1 → E2 arises from an inclusion
of lattices L1 ⊆ L2. In this situation it is clear what the kernel of φ is. By commutativity,
since α = 1, the kernel of φ consists of the images Φ1(z) of points z ∈ C for which Φ2(z) = 0;
these are precisely the z ∈ L2 (which includes L1 ⊆ L2 but may also include z ∈ L2 − L1,
since L2 is a finer lattice). We have Φ1(z) = 0 if and only if z ∈ L1, and it follows that

# kerφ = [L2 : L1].

We are in characteristic zero, so φ is automatically separable and deg φ = # kerφ = [L2 : L1].
The discussion above applies to any isogeny of elliptic curves over C; up to isomor-

phism they all arise from lattice inclusions; in particular, the inclusion nL ⊆ L induces the
multiplication-by-n endomorphism of EL.
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Let us now specialize to the case where E1/C has CM by O. Then L1 is homothetic to a
proper (hence invertible) O-ideal b, so let us put L1 = b and E1 = Eb. If a is any invertible
O-ideal, the inclusion of lattices b ⊆ a−1b (given by ab ⊆ b) induces an isogeny

φa : Eb → Ea−1b = aEb

that corresponds to the action of a on Eb defined in (1). Moreover, if E2 = EL2 has CM by
O, then L2 is homothetic to an invertible O-ideal c, and if we replace b by the homothetic
O-ideal (Nc)b, then c divides (hence contains) b, because Nc = cc̄, by Theorem 18.9. If we
now put a = cb−1, then the isogeny φa : Eb → Ec = aEb induced by the inclusion b ⊆ c
corresponds to the action of a on Eb. After rescaling a, b, c by integer multiples if necessary,
we can assume a is an invertible O-ideal.

Thus all elliptic curves over C with CM by O are isogenous, and up to isomorphism,
every isogeny between elliptic curves over C with CM by O is of the form Eb → aEb, where
a and b are invertible O-ideals.

Definition 18.12. Let E/k be any elliptic curve with CM by an imaginary quadratic
order O, and let a be an O-ideal. The a-torsion subgroup of E is defined by

E[a] := {P ∈ E(k̄) : α(P ) = 0 for all α ∈ a},

where we are viewing each α ∈ a ⊆ O ' End(E) as an endomorphism.

Theorem 18.13. Let O be an imaginary quadratic order, let E/C be an elliptic curve with
endomorphism ring O, let a be an invertible O-ideal, and let φa be the corresponding isogeny
from E to aE. The following hold:

(i) kerφa = E[a];

(ii) deg φa = Na.

Proof. By composing φa with an isomorphism if necessary, we assume without loss of gener-
ality that E = Eb for some invertible O-ideal b. Let Φ be the isomorphism from C/b→ Eb

that sends z to (℘(z), ℘′(z)). We have

Φ−1(E[a]) = {z ∈ C/b : αz = 0 for all α ∈ a}
= {z ∈ C : αz ∈ b for all α ∈ a}/b
= {z ∈ C : za ⊆ b}/b
= {z ∈ C : zO ⊆ a−1b}/b
= (a−1b)/b

= ker
(
C/b z→z−→ C/a−1b

)
= Φ−1(kerφa),

which proves (i). We then note that

#E[a] = [a−1b : b] = [b : ab] = [O : aO] = [O : a] = Na,

which proves (ii).

Corollary 18.14. Let O be an imaginary quadratic order and let a be an invertible O-ideal.
For every elliptic curve E/C with CM by O the elliptic curves E and aE are related by an
isogeny φa : E → aE of degree Na.

Proof. This follows immediately from the theorem and discussion above.

18.783 Spring 2017, Lecture #18, Page 7



18.6 Discriminants

To streamline our work with imaginary quadratic orders, we define the discriminant of O, a
negative integer that uniquely determines O. Since O is a subring of an imaginary quadratic
field that has rank 2 as a Z-module, we can always write O as [1, τ ], where τ is an algebraic
integer that does not lie in Z; its minimal polynomial is necessarily of the form x2 + bx+ c
with discriminant b2 − 4c ∈ Z<0.

Definition 18.15. Let O = [1, τ ] be an imaginary quadratic order. The discriminant of O
is the discriminant of the minimal polynomial of τ , which we can compute as

disc(O) = (τ + τ̄)2 − 4τ τ̄ = (τ − τ̄)2 = det

(
1 τ
1 τ̄

)2

.

If A is the area of a fundamental parallelogram of O then

disc(O) = −4| im τ | = (τ − τ̄)2 = −4| im τ | = −4A,

thus the discriminant does not depend on our choice of τ , it is intrinsic to the lattice O.

Since the discriminant disc(O) is a negative integer of the form b2 − 4c with b, c ∈ Z, it
is necessarily a square modulo 4 (hence congruent ot 0 or 1 mod 4).

Definition 18.16. A negative integer D that is a square modulo 4 is an (imaginary
quadratic) discriminant. Discriminants not of the form u2D′ for some integer u > 1 and
discriminant D′ are said to be fundamental. Every discriminant can be written uniquely as
the product of a square and a fundamental discriminant.

There is a one-to-one relationship between imaginary quadratic discriminants and orders
in imaginary quadratic fields; fundamental discriminants correspond to maximal orders.

Theorem 18.17. Let D be an imaginary quadratic discriminant. There is a unique imagi-
nary quadratic order O with disc(O) = D = u2DK , where DK is the fundamental discrimi-
nant of the maximal order OK in K = Q(

√
DK), and u = [OK : O].

Proof. Write D = disc(O) as D = u2DK , with u ∈ Z>0 and DK a fundamental discrimi-
nant. Let K = Q(

√
DK), and let OK be its ring of integers, the maximal order of K, by

Theorem 13.26. Now define

τ :=

{√
DK
2 if DK ≡ 0 mod 4;

1+
√
DK

2 if DK ≡ 1 mod 4.

Then disc([1, τ ]) = (τ − τ̄)2 = DK , and τ + τ̄ and τ τ̄ are integers, so τ ∈ OK and [1, τ ] is a
suborder of OK . But OK is the maximal order of K, so OK = [1, τ ] and disc(OK) = DK .
The order O = [1, uτ ] then has discriminant (uτ − uτ)2 = u2DK = D.

Conversely, if O = [1, ω] is any imaginary quadratic order of discriminant D, than ω is
the root of a quadratic equation of discriminant D and therefore an algebraic integer in the
field Q(

√
D) = Q(

√
DK) = K. We must have O ⊆ OK , since OK is the unique maximal

order. The ratio of the squares of the areas of the fundamental parallelograms of OK and O
must be D/DK = u2, which implies [OK : O] = u. Let OK = [1, τ ] with τ defined as above.
By Lemma 18.18 below, uOk ⊆ O, so uτ ∈ O, and the lattice [1, uτ ] ⊆ O has index u in OK
and is therefore equal to O. It follows that [1, uτ ] is the unique imaginary quadratic order
of discriminant D.
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The index u = [OK : O] is also called the conductor of the order O.

Lemma 18.18. If L′ is an index n sublattice of L then nL is an index n sublattice of L′.

Proof. Without loss of generality, L = [1, τ ] and L′ = [a, b+ cτ ] (let a be the least positive
integer in L′). Comparing areas of fundamental parallelograms yields

n| im τ | = |a im cτ | = |ac|| im τ |
n = |ac|,

Thus a|n, so n ∈ L′, and a(b+cτ)−ba = acτ = ±nτ , so nτ ∈ L′; therefore nL = [n, nτ ] ⊆ L′.
We have [L : L′] = n and [L : L′][L′ : nL] = [nL : L] = n2, so [L′ : nL] = n.
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