
18.783 Elliptic Curves Spring 2015

Problem Set #6 Due: 03/20/2015

Description

These problems are related to the material covered in Lectures 11-12. As usual, the first
person to spot each non-trivial typo/error will receive one point of extra credit.

Instructions: Solve Problem 1 and one of Problems 2-4.

I suggest reading through all the problems 2-4 before picking the one you will solve.
In terms of the theory/computation trade-off, Problem 2 is about the second stage of
ECM and involves mostly theory and very little coding (you are asked to optimize a
function using Newton’s method). Problem 3 asks you to construct an elliptic curve
primality proof which you can write a program to do if you wish, but you might find
it more expedient to just do this “by hand” with the assistance of Sage, in which case
no real coding is involved; it does ask for a complexity analysis and the last part of the
problem will require a bit of thought and perhaps some creativity. Problem 4 asks you to
construct a special form of a primality proof for a large prime (over 1000 bits). This will
involve some code — the algorithm is not complicated and should be easy to implement,
but your code will need to be reasonably efficient; on the other hand this problem will
probably have the shortest write up.

Problem 1. Subexponential bounds (20 points)

This short problem is meant to familiarize you with subexponential complexity bounds.
You do not need to show your work, but be sure to think through your answers carefully,
not all of them are immediately obvious. Recall that our subexponential complexity
bounds have the form

LN [α, c] := exp
((
c+ o(1)

)
(logN)α(log logN)1−α

)
,

where 0 ≤ α ≤ 1 and c > 0. The notation o(1) denotes any function ε(N) whose absolute
value converges to 0 as N →∞. Thus LN [α, c] should really viewed as a set of functions.
A function f(N) belongs to the set LN [α, c] if and only if

lim
N→∞

log f(N)

(logN)α(log logN)1−α
= c.

To get a sense of how these bounds grow with N , and how to compare consider the
following table, in which the o(1) term is assumed to be 0 and n = log2N .

n n5 LN [1/4, 1] LN [1/2, 1] LN [1/2,
√

2] n2LN [1/2,
√

2] N1/4.

64 1.1× 109 1.1× 103 4.3× 105 9.3× 107 3.8× 1011 6.6× 104

128 3.4× 1010 1.3× 104 4.6× 108 1.8× 1012 2.9× 1016 4.3× 109

256 1.1× 1012 2.8× 105 1.5× 1013 4.2× 1018 2.7× 1023 1.8× 1019

512 3.5× 1013 1.3× 107 6.7× 1019 1.1× 1028 2.9× 1033 3.4× 1038

1024 1.1× 1015 1.6× 109 4.4× 1029 8.4× 1041 8.8× 1047 1.2× 1077

2048 3.6× 1016 6.1× 1011 1.2× 1044 2.2× 1062 9.2× 1068 1.3× 10154

1

(a) Simplify the following expressions, in which 0 < α, β < 1 and c, d > 0, and p(x)
denotes a polynomial of degree k > 0. Interpret sums and products of complexity
bounds (sets of functions) in the obvious way, e.g. S + T is the set of all functions
s+ t with s ∈ S and t ∈ T . Write your answer in the form LN [γ, e], where γ and e
may depend on α, β, c, d, k.

(i) LN [α, c] + LN [β, d]

(ii) LN [α, c]LN [β, d]

(iii) LN [α, c]p(logN)

(iv) p(LN [α, c])

(v) Lp(N)[α, c]

(vi) LLN [α,c][β, d]

(b) For each of the following pairs of complexity bounds A(N) and B(N) representing
sets of functions A and B, indicate which of the following holds: (a) A (B, (b)
B (A, (c) A = B, (d) A ∩B = ∅, or (e) none of the above. Assume 0 < α, β < 1.

(i) LN [α, c] and O(LN [α, c]).

(ii) LN [α, c] and LN [β, d] with α > β.

(iii) LN [α, c] and LN [α, d] with c > d.

(iv) LN [α, c] and O
(

exp
(
c(logN)α

))
.

Problem 2. ECM second stage (80 points)

The elliptic curve factorization method (ECM) can be extended to incorporate a second
stage that substantially improves its practical performance. In this problem you will
analyze the benefit of this second stage, and, as a side benefit, derive a generic algorithm
to compute the order of a group element using o(

√
N) group operations.

Given an integer N to be factored, a bound M on the largest prime divisor of N
one hopes to find, and a smoothness bound B1 = LM [1/2, 1/

√
2], ECM generates random

elliptic curves E/Q with a known point P of infinite order and computes the scalar
multiple mP = (xm : ym : zm), working with projective coordinates reduced modulo N .
The integer m =

∏
`eii is a product of prime powers with `eii ≤ (

√
M + 1)2 ≤ `ei+1

i ,
ranging over all primes `i ≤ B1. The goal is to find a curve for which gcd(zm, N) is
non-trivial (we actually check gcd(zmi , N) for the partial products mi =

∏
`eii as we go).

But suppose that, as often happens, gcd(zm, N) = 1. Let us assume that N has a
prime factor p ≤ M at which E has good reduction, and let Ep denote the reduction
of E modulo p. We know that #Ep(Fp) is not B1-smooth, meaning that it has a prime
factor q > B1, but suppose that there is just one such q. Then the reduction of the point
Q = mP must have order q as an element of Ep(Fp). Provided q is not too large, say,
q ≤ B2 for some bound B2 ≈ B2

1 , then we can try to “compute” the order of mP in
Ep(Fp) using a baby-steps giant-steps search up to the bound B2. This is not as simple
as it sounds: we don’t know p so we must work modulo N while checking for collisions
modulo p, but there is an efficient algorithm for detecting collisions [3, §3]. The details of
this algorithm do not concern us here, we simply want to consider the potential speedup
we might gain from such a second stage.

If the prime factors of an integer n are all smaller than y, and all but one of them is
smaller than z, then n is said to be semismooth with respect to y and z. The function
ψ(x, y, z) counts the number of such integers n ≤ x. We are interested in the quantity
1
Mψ(M,B2, B1). Under the heuristic assumption that the orders of random elliptic

2

curves over a finite field are about as likely to be semismooth as integers of similar size,
this is the probability that our algorithm will be able to find an integer n for which
nP ≡ 0 mod q, either in the first or second stage (we aren’t guaranteed to succeed if this
happens, we also need nP 6≡ 0 mod N , but this is very likely to be true).

Let B1 = M1/u. We saw in class that, under our heuristic assumption, the expected
running time of ECM with just a single stage is proportional to

M1/u(ψ(M,M1/u)/M)−1M(logN). (1)

Using the Canfield-Erdő s-Pomerance bound ψ(x, x1/u)/x = u−u+o(u), we found that we
should pick u =

√
2 logM/ log logM and obtained the bound L[1/2/,

√
2]M(logN). But

this is a very rough approximation and we ignored several factors logarithmic in M along
the way (these are hidden in the o(1) term in the subexponential notation).

We can get a much more precise estimate by using the Dickman function ρ(u) to
approximate ψ(x, x1/u)/x. The Dickman function ρ(u) is defined via the differential
delay equation

ρ′(u) = −ρ(u− 1)/u,

with ρ(u) = 1 for 0 ≤ u ≤ 1. Asymptotically ρ(u) = ψ(x, x1/u)/x+ o(1), and in practice
ρ(u) is very close to 1

xψ(x, x1/u) for x and u in the range we are interested in. Sage has
a built-in function dickman rho(u) that computes a good numerical approximation
to ρ(u). See [2, §1] if you want to know more about ρ(u) and its relation to ψ(x, y).

To minimize (1) it suffices to thus suffices to minimize

M1/u/ρ(u). (2)

(a) Using Newton’s method, write a simple function in Sage that approximates (to at
least 3 decimal places) the value of u that minimizes (2).

For the sake of simplicity, let us suppose that B2 = B2
1 = M2/u and that the second

stage has a running time approximately equal to that of the first. Then the expected
running time of ECM with a BSGS second stage is heuristically proportional to

2M1/u(M/ψ(M,M2/u,M1/u)) ·M(logN), (3)

with the same constant of proportionality as in our single stage analysis. In fact, we
should optimally spend asymptotically slightly less time on the second stage than the
first; this would allow us to save the factor of 2 in (3). You will prove below that this
can actually be achieved using B2 = B2

1 if we modify the baby-steps giant-steps search
appropriately.

Analogous to ρ(u), Bach and Peralta [1] define the semismooth probability function

G(a, b) = lim
x→∞

1

x
ψ(x, xb, xa)

(note the order of xa and xb). The function G(a, b) can be numerically approximated
using the Dickman function in terms of the function F (α) = ρ(1/α) as

G(α, β) = F (α) +

∫ β

α
F

(
α

1− t

)
dt

t
.

3

By numerically approximatingG(a, b) we can determine a suitable choice of u to minimize
the quantity

M1/u/G(1/u, 2/u). (4)

This calculation is a bit time consuming, so a table of optimal u values for M = 2k

with k = 10, 20, . . . , 200 has been prepared for you and can be found in this Sage work-
sheet, which also implements a function G(a,b) that approximates G(α, β) using ρ(u).

(b) Use the algorithm you implemented in (a) to generate a similar table of optimal u
values that minimize (2). Then, for k = 20, 40, 60, . . . , 200 compute M1/u1/ρ(u1)
and M1/u2/G(1/u2, 2/u2), with M = 2k and u1 chosen to minimize the first quantity
and u2 chosen to minimize the second. List these values and their ratio in a table.

The ratios express the speedup we might hope to gain by using a second stage. You
should find that the speedup is clearly increasing with k, implying that it is asymptoti-
cally better than a constant factor. Nevertheless, the second stage does not improve the
subexponential complexity bound, which ignores even polynomial factors of logM .

(c) Prove that the heuristic expected running time of ECM with a second stage is still
LM [1/2,

√
2]M(logN), the same as with just one stage. Based on the data in your

table from part (b), estimate what the asymptotic speedup is as a function of logM .

Let Q = mP be the point obtained after an unsuccessful first stage. When using
baby-steps giant-steps to implement the second stage we can take advantage of the fact
that, for any prime divisor p ≤M of N , in the group E(Fp) the reduction of the point Q
cannot have order divisible by any prime pi ≤ B1. Indeed, the second stage will succeed
only in the case where Q has prime order q ∈ (B1, B2] in E(Fp).

This means that our baby-steps giant-steps search only needs to check O(B2/ logB2)
distinct multiples of Q, those corresponding to prime values. In principle, this could
potentially be achieved with just

√
B2/ logB2 group operations, but it is not obvious

how to do this. At a minimum, we can certainly avoid checking multiples of small primes
2, 3, 5, . . . , ` whose product t is substantially less than

√
B2, for the sake of concreteness,

let’s say t ≈ B1/4
2 . We should then compute baby steps of the form iQ with gcd(i, t) = 1

for all 1 ≤ i ≤ r for some multiple r of t, followed by giant steps of the form jrQ for
1 ≤ j ≤ s, where rs ≥ B2.

(d) Explain how to choose r and s so that the number of baby steps and giant steps
are approximately equal, and give a tight asymptotic bound on the total number of
steps in terms of B2. You may use the Prime Number Theorem and standard facts
it implies, such as

∑
p≤x log p ∼ x and

∑
p≤x

1
p = log log x+O(1).1

(e) Now forget about ECM. Using your answer to part (d), describe a generic algorithm
to compute the order of an element α ∈ G given an integer N > |α| that uses o(

√
N)

group operations (the order of α may be prime or composite).

(f) Modify the algorithm in part (e) to not require N as an input, so that it computes
|α| using o(

√
|α|) group operations and give an asymptotic bound on the number

group operations it uses.

1The second fact doesn’t require the Prime Number Theorem, it was proved earlier by Mertens.

4

https://cloud.sagemath.com/projects/de378c46-9f0f-42bb-9f95-0d1b0073e8e9/files/18.783 Problem Set 6 Problem 2.sagews
https://cloud.sagemath.com/projects/de378c46-9f0f-42bb-9f95-0d1b0073e8e9/files/18.783 Problem Set 6 Problem 2.sagews

(g) Computing |α| is equivalent to computing the discrete logarithm of the identity
with respect to α. Explain why your algorithm does not contradict Shoup’s Ω(

√
p)

generic lower bound for the discrete logarithm problem even when |α| = p is prime.

It is worth noting that you have just disproved what was once a standard assumption,
namely, that the worst-case complexity of computing |α| is Ω(

√
|α|) group operations.

Problem 3. ECPP (80 points)

Let us define an elliptic curve primality proof (ECPP) for p as a sequence of certificates
C1, C2, . . . , Ck, where each certificate Ci is of the form (pi, Ai, Bi, xi, yi, pi+1) with p1 = p
and pk+1 < (log p)4. In each certificate Ci, the primes pi and pi+1 satisfy

(4
√
pi + 1)2 < pi+1 < (

√
pi + 1)2/2, (5)

and Pi = (xi, yi) is a point of order pi+1 on Ei : y
2 = x3 +Aix+Bi over Fpi .

(a) Let p be the least prime greater than 2128 ·N+364, where N is the first four digits of
your student ID (use the next prime function in Sage to compute p). Construct a
short elliptic curve primality proof for p; this means each prime pi+1 should be close
to the lower bound in (5) (you should not need more than 6 or 7 certificates). Note:
the Goldwasser-Kilian algorithm typically will not produce a proof this short, it
will have pi+1 closer to the upper bound in (5), so you will need to do something
slightly different.

(b) Give an algorithm for verifying an elliptic curve primality proof and analyze its
complexity. Express your answer solely in terms of n = log p and assume the worst-
case (so the proof might not be as short as the one you generated in (a)).

(c) Analyze the asymptotic complexity of constructing an elliptic curve primality proof
using the Goldwasser-Kilian algorithm given in class, under the heuristic assumption
that the orders of random elliptic curves over Fp have factorizations comparable to
random integers in the interval [p, 2p]. Assume that trial division and the Miller-
Rabin test are used for attempted factorizations. Use an O(n5 log log n) complexity
bound for point-counting via Schoof’s algorithm.

(d) Now suppose that you want to construct an elliptic curve primality proof that can
always be verified in O(nM(n)) time, where n = log p. Under the heuristic as-
sumption above, give a probabilistic algorithm for constructing such a proof whose
expected running time is bounded by Lp[α, c], using the smallest value of α that
you can (hint: you can make α < 1/2). Your answer should include a high-level
description of the algorithm and a (heuristically proven) bound on its complexity.

Problem 4. Pomerance proofs (80 points)

A Pomerance proof is a special form of an elliptic curve primality proof that involves
just a single certificate (p,A, x0, k) and uses a Montgomery curve By2 = x3 + Ax2 + x
over Fp on which there is a point (x0, y0) of point of order 2k > (4

√
p+ 1)2 ≥ 2k−1. Note

that neither the y-coordinate nor B is needed to verify the certificate (no matter what
x30 +Ax20 + x0 is, there exists a nonzero B and a y0 that will work and the verifier does

5

not need to know what they are), but the verifier should check that gcd(A2 − 4, p) = 1
to ensure that the curve is not singular.

Every prime p has a Pomerance proof, but for a general prime p no efficient algorithm
is known for finding one. In this problem you will develop a very efficient algorithm to
construct a Pomerance proof for primes of a special form.

Let us first convince ourselves that every sufficiently large prime has a Pomerance
proof. To do this we note the following theorem, which we will prove later in the course.

Theorem 1. Let p be a prime. For every integer N in the Hasse interval

H(p) = [p+ 1− 2
√
p, p+ 1 + 2

√
p]

there exists an elliptic curve E/Fp for which E(Fp) is a cyclic group of order N .

(a) Using the theorem above, prove that every prime p > 31 has a Pomerance proof.

Now let E be the elliptic curve y2 = x3 + 8 over Fp.

(b) Using the formula #E(Fp) = p+ 1 +
∑

x∈Fp

(
x3+8
p

)
, prove that for every odd prime

p ≡ 2 mod 3 we have #E(Fp) = p+ 1.

(c) Prove that for any prime p ≡ 11 mod 12 the curve E/Fp can be put in Montgomery
form By2 = x3 + Ax2 + x. Give a deterministic algorithm that computes A and B
in time O(nM(n)), where n = log p.

(d) Give a probabilistic algorithm to construct a Pomerance proof for primes of the form
p = 3 · 2mc− 1, where c is odd and 2m > (4

√
p+ 1)2, and analyze its complexity. Be

sure to address the fact that the algorithm you gave in part (c) assumes that p is
prime, but now it must also handle composite values of p.

(e) Implement your algorithm and use it to construct a Pomerance proof for a prime of
the form p = 2k · 3m− 1 that is greater than 21000. Be sure to format you answer so
that all of the digits in the certificate you construct fit on the page. To speed things
up, you may wish to do some trial division by small primes to eliminate obviously
composite values of p before attempting to construct a primality proof.

(f) As noted above, no efficient algorithm is known for constructing a Pomerance proof.
On the other hand, there certainly is an algorithm; for example, one could simply
enumerate all the possible certificates (clearly a finite set) and attempt to verify
them. But you can certainly do better than this. Give the most efficient algorithm
you can come up with for constructing a Pomerance proof for a given prime p > 31
and bound its complexity. Your algorithm need not be deterministic, and you should
feel free to assume any heuristics you believe are reasonable.

Problem 5. Survey

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10
= “mind-blowing”), and how hard you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

6

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

3/12 Index calculus, factoring integers

3/17 Elliptic curve primality proving

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.

References

[1] E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Mathematics of
Computation 65 (1998) 1701–1715.

[2] A. Granville, Smooth numbers, computational number theory and beyond , in Algo-
rithmic Number Theory: Lattices, Number Fields, Curves and Cryptography (MSRI
Workshop), MSRI Publications 44 (2008), 267–324.

[3] P. Zimmermann and B. Dodson, 20 years of ECM , Algorithmic Number Theory 7th
International Symposium (ANTS VII), LNCS 4076 (2006), 525–542.

7

http://www.jstor.org/stable/2153733
http://library.msri.org/books/Book44/files/09andrew.pdf
http://link.springer.com/chapter/10.1007/11792086_37

