
18.783 Elliptic Curves Spring 2015
Lecture #17 04/9/2015

Andrew V. Sutherland

17 Complex multiplication

Over the course of the last two lectures we established a one-to-one correspondence between
lattices L (up to homethety) and elliptic curves E/C (up to isomorphism), given by the
map that sends the lattice L to the elliptic curve

EL : y2 = x3 − g2(L)x− g3(L),

together with an explicit isomorphism

Φ: C/L→ EL(C)

z 7→

{
(℘(z), ℘′(z)) z 6∈ L;

0 z ∈ L,

where ℘(z) is the Weierstrass ℘-function for the lattice L. The map Φ is a group isomorphism
that is also an isomorphism of complex manifolds (we did not actually prove the latter fact,
but it is clear that Φ is a holomorphic map away from L and this is the only analytic
property of Φ that we will use).

17.1 Endomorphism rings of complesx tori and elliptic curves over C

Having established the correspondence between C/L and E/C, we now wish to make explicit
the relationship between endomorphisms of C/L and endomorphisms of E/C. We know that
every endomorphism φ of an elliptic curve y2 = x3 + Ax+ B can be expressed in terms of
rational functions in x and y, and it is natural to expect that we should be able to express
the corresponding endomorphism of the torus C/L in terms of rational functions of ℘(z)
and ℘′(z), since x = ℘(z) and y = ℘′(z) under the isomorphism Φ. In order to prove this
we need the following lemma.

Recall that the set of all elliptic functions for a lattice L forms a field C(L). We now
want to show that C(L) is generated by the Weierstrass ℘-function and its derivative,
and moreover, that the subfield of even elliptic functions in C(L) is generated by the the
Weirestrass ℘-function alone.

Lemma 17.1. Let f(z) be an elliptic function with respect to a lattice L. Then f(z) can
be written as a rational function of ℘(z) = ℘(z;L) and ℘′(z). Moreover, if f(z) is an even
function, then it can be written as a rational function of ℘(z) alone, and if f(z)is an even
function with no poles outside L it can be written as a polynomial in ℘(z).

Proof. Every f ∈ C(L) can be written as the sum

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2

of an even function and an odd function, and every odd function g ∈ C(L) is of the form

g(z) =
g(z)

℘′(z)
℘′(z),
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where g(z)/℘′(z) is an even function. It is thus enough to show that if f ∈ C(L) is an even
function then it can be written as a rational function of ℘(z).

So let f ∈ C(L) be an even function and let L = [ω1, ω2]. We may assume without loss
of generality that f does not have poles at ω1/2, ω2/2, (ω1 +ω2)/2: we can always replace f
by g = (af + b)/(cf +d) for some a, b, c, d ∈ C chosen so that g does not have poles at these
points, and provided that ad− bc 6= 0 (which we can easily arrange), we have C(f) = C(g).

Now suppose that f(z) has a pole of order n at a point w with 2w 6∈ L, and consider
the even elliptic function

(℘(z)− ℘(w)n.

which has poles only at points in L and a zero of order n at w; here we use the fact that
℘′(w) 6= 0 (by Lemma 15.30), so w is a simple zero of ℘(z)− ℘(w). The function

(℘(z)− ℘(w))nf(z)

is then holomorphic at w, and it does not have any poles at points where f(z) is holomorphic
except possibly for points in L. The function f(z) has only finitely many poles in any
fundamental region, so we can repeat this process until we obtain a polynomial Q ∈ C[x]
such that Q(℘(z))f(z) is holomorphic at all points w 6∈ L.

It thus suffices to consider the case where f is holomorphic outside L, which we now
assume. The Laurent series for f(z) about 0 can be written in the form

f(z) =
∞∑

k=−n
a2kz

2k,

with a2n 6= 0. If n ≥ 0, then f is holomorphic on C, and f bounded (since it is periodic),
so by Liouville’s theorem it is a constant function, hence an element of C(℘). If n > 0 then

f(z)− a−2n℘
n(z)

is an even elliptic function of order at most 2(n−1) that is holomorphic outside L. Repeating
the process until n = 0, we obtain a function of the form f(z) − P

(
℘(z)

)
, with P ∈ C[x],

that is holomorphic and bounded on C and therefore constant. It follows that f ∈ C[℘].

Theorem 17.2. Let L ⊆ C be a lattice, let E = EL be the corresponding elliptic curve, and
let Φ: C/L→ E(C) be the isomorphism that sends z 6∈ L to

(
℘(z), ℘′(z)

)
. For any α ∈ C,

the following are equivalent:

(1) αL ⊆ L;

(2) ℘(αz) = u
(
℘(z)

)
/v
(
℘(z)

)
for some polynomials u, v ∈ C[x];

(3) There is a unique φ = φα ∈ End(E) such that the following diagram commutes:

C/L E(C)

C/L E(C)

Φ

α φ

Φ

where α denotes the endomorphism of C/L induced by z 7→ αz.
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Moreover, for every φ ∈ End(E) there is a unique α = αφ such that (1)–(3) hold. The maps
α 7→ φα and φ→ αφ are inverse ring isomorphisms between End(E) and {α ∈ C : αL ⊆ L},
and we have N(α) = deg φ = deg u = deg v+ 1, where φ = φα and u, v ∈ C[x] are as in (2).

Before beginning the proof, let us be clarify the two ways we may view {α ∈ C : αL ⊆ L}
as a ring. First, it is a subring of C, since it clearly contains 0 and 1 and it closed under
addition and multiplication. Second, for any α ∈ C the map z 7→ αz is an endomorphism
of the additive group of C, and if αL ⊆ L then this map induces an endomorphism of C/L;
note that we can view the product αβ either as multiplication of complex numbers or as a
composition of endomorphisms. It is not necessarily obvious that every endomorphism of
C/L is induced by a map of the form z 7→ αz, but it will follow from the theorem.

Proof. Properties (1)–(3) clearly hold for α = 0, so we assume α 6= 0.
(1)⇒ (2): Let ω ∈ L. Then ℘(α(z+ω)) = ℘(αz+αω) = ℘(αz). Thus ℘(αz) is periodic,

and ℘(αz) is clearly meromorphic, so it is an elliptic function (with respect to L). It is an
even function, so it can be written as a rational function of ℘(z), by Lemma 17.1.

(2) ⇒ (1): The function ℘(αz) has a pole at 0, and if it is a rational function of ℘(z)
then it is periodic and has a pole at every ω ∈ L. This implies that ℘(z) has a pole at αω
for all ω ∈ L, but ℘(z) is holomorphic outside L so αω ∈ L for a all ω ∈ L.

(2)⇒ (3): Assume ℘(αz) = u(℘(z))/v(℘(z)) and let φ = φα be the rational map

φ =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
,

where u, v ∈ C[x] are given by (2) and s = (u′v − v′u) and t = αv2, so that

℘′(αz) =
1

α

(
℘(αz)

)′
=

1

α

(
u(℘(z))

v(℘(z)

)′
=
s(℘(z))

t(℘(z))
℘′(z).

We then have

φ(Φ(z)) = (φ(℘(z), ℘′(z)) =

(
u(℘(z))

v(℘(z))
,
s(℘(z))

t(℘(z))
℘′(z)

)
= (℘(αz), ℘′(αz)) = Φ(αz).

If φ′ ∈ End(E) also satisfies φ′(Φ(z)) = Φ(αz) then

(φ− φ′)(Φ(z)) = φ(Φ(z))− φ′(Φ(z)) = Φ(αz)− Φ(α(z)) = 0,

which implies φ′ = φ, so φ = φα is unique.
(3) ⇒ (1): Let φ = φα. For all ω ∈ L we have Φ(αω) = φ(Φ(ω)) = φ(0) = 0, which

implies αω ∈ L, thus αL ⊆ L.
We now prove the “moreover” part of the theorem. For any φ ∈ End(E), the map

Φ−1 ◦ φ ◦ Φ

is an endomorphism of C/L, since Φ and Φ−1 are isomorphisms, and we can lift it to a map
φ∗ : C→ C that is periodic with respect to L. On any sufficiently small open neighborhood
U of 0 ∈ C the map φ∗ is holomorphic1 away from 0. We have φ∗(0) ∈ L and

φ∗(z1 + z2) ≡ φ∗(z1) + φ∗(z2) mod L,

1An analog of the inverse function theorem holds for holomorphic functions.
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and by replacing φ∗ with φ∗ − φ∗(0) if necessary, we may assume φ∗(0) = 0. By continuity,
φ∗(z)→ 0 as z → 0, so on very sufficiently small U we have

φ∗(z1 + z2) = φ∗(z1) + φ∗(z2)

for all z1, z2 ∈ U . We now use the definition of the derivative to compute, for any z ∈ U ,

(φ∗)′(z) = lim
h→0

φ∗(z + h)− φ∗(z)
h

= lim
h→0

φ∗(z) + φ∗(h)− φ∗(z)
h

= lim
h→0

φ∗(0 + h)− φ∗(0)

h
= (φ∗)′(0).

Thus the derivative of φ∗ is equal to a constant α := αφ := (φ∗)′(0) at all z ∈ U , and
φ∗(z) = αz for all z ∈ U . For any z ∈ C, we may choose n ∈ Z such that z

n ∈ U . Thus

φ∗(z) = nφ∗
( z
n

)
= nα

z

n
= αz

for all z ∈ C, so φ∗ is the multiplication-by-α map z 7→ αz on C/L. For all ω ∈ L we must
have φ∗(ω) = αω ∈ L, since φ∗ induces an endomorphism of C/L, thus αL ⊆ L, and α
satisfies the equivalent conditions (1)–(3). By construction we have φ(Φ(z)) = Φ(αφz), so
φ = φα, since φα is unique. Conversely, if φ(Φ(z)) = Φ(α′z) for some α′ then α′ = φ∗, so
α = αφ is unique and the maps α 7→ φα and φ 7→ αφ are inverse bijections.

We now show that the map Ψ: End(E) → {α ∈ C : αL ⊆ L} that sends φ to αφ is a
ring homomorphism. Clearly, Ψ(0) = 0 and Ψ(1) = 1. Let φ1, φ2 ∈ End(E). Then

Ψ(φ1 + φ2) = Φ−1 ◦ (φ1 + φ2) ◦ Φ = Φ−1 ◦ φ1 ◦ Φ + Φ−1 ◦ φ2 ◦ Φ = Ψ(φ1) + Ψ(φ2),

since Φ is an isomorphism, and

Ψ(φ1φ2) = Φ−1 ◦ (φ1 ◦ φ2) ◦ Φ = (Φ−1 ◦ φ1 ◦ Φ) ◦ (Φ−1 ◦ φ2 ◦ Φ) = Ψ(φ1)Ψ(φ2).

Thus Ψ is a ring homomorphism and therefore an isomorphism, since it is a bijection.
For any φ ∈ End(E), the complex number α = Ψ(φ) satisfies the characteristic equation

X2 − (trφ)X + deg φ = 0,

which has integer coefficients and discriminant tr(φ)2 − 4 deg(φ) ≤ 0. Thus either α ∈ Z or
α is an algebraic integer in an imaginary quadratic field, and in either case we can compute
its trace T(α) = α+ ᾱ = tr(φ) and norm N(α) = αᾱ = deg φ.

Finally, we note that by (2) we can write v(℘(z))℘(αz) = u(℘(z)). The functions u(℘(z))
and v(℘(z)) have poles of order 2 deg u and 2 deg v at zero, respectively, while ℘(αz) has a
pole of order 2 at zero, so we must have deg u = deg v + 1 and therefore

deg φ = max(deg u,deg v) = deg u = deg v + 1,

where φ = φα =
(
u(x)
v(x) ,

s(x)
t(x) y

)
as above.

Corollary 17.3. Let E be an elliptic curve defined over C. Then End(E) is commutative
and therefore isomorphic to either Z or an order in an imaginary quadratic field.

4



Proof. Let L be the lattice corresponding to E. The ring End(E) ' {α ∈ C : αL ⊆ L} is
clearly commutative, and therefore not an order in a quaternion algebra. The result then
follows from our classification of endomorphism rings of elliptic curves in Lecture 13.

Remark 17.4. Corollary 17.3 applies to elliptic curves over Q, and over number fields,
since these are subfields of C, and it can be extended to arbitrary fields of characteristic 0
via the Lefschetz principle; see [1, Thm. VI.6.1].

Remark 17.5. Theorem 17.2 explains the origin of the term complex multiplication (CM).
When End(EL) is bigger than Z the extra endomorphisms in End(EK) all correspond to
multiplication-by-α maps in End(C/L) for some (non-real) α ∈ C.

17.2 Elliptic curves with a given endomorphism ring

We have shown that for any lattice L ⊆ C we have ring isomorphisms

End(EL) ' {α ∈ C : αL ⊆ L} ' End(C/L). (1)

In order to simplify the discussion, it will be convenient to view these isomorphism as
equalities. This is clear for the isomorphism on the right, since every endomorphism
α : C/L → C/L is induced by a map z 7→ αz. For the isomorphism on the left, note
that End0(EL) is isomorphic to either Q or an imaginary quadratic field, so we can always
embed End0(EL) in C. Once we have done this, provided that we regard End(EL) as a
subring of End0(EL) (via the canonical injection φ 7→ φ⊗ 1), we actually have an equality
End(EL) = {α ∈ C : αL ⊆ L}; moreover, when End(C/L) is an imaginary quadratic or-
der O, we can choose the embedding of End0(EL) into C so that each multiplication-by-α
endomorphism of C/L corresponds to α ∈ End(EL) (as opposed to α̂). This is known as the
normalized identification of End(EL) with End(C/L) = O, which we henceforth assume.

We now want to focus on the CM case, where End(EL) is an order O in an imaginary
quadratic field K. The order O is itself a lattice, and we would like to understand how the
lattices L and O are related. In particular, for which lattices L do we have End(EL) = O?
An obvious candidate is L = O. If α ∈ End(EO), then αO ⊆ O, by (1), and therefore
α ∈ O, since the ring O contains 1. Conversely, if α ∈ O, then αO ⊆ O, since O is closed
under multiplication, and therefore α ∈ End(EO), by (1); thus End(EO) = O.

The same holds for any lattice that is homothetic to O. Indeed, the set {α ∈ C : aL ⊆ L}
does not change if we replace L with L′ = λL for any λ ∈ C×, so we are really only
interested in lattices up to homethety (and elliptic curves up to isomorphism). So the
question now before us is whether there are any lattices L not homothetic to O for which
we have End(EL) = O.

Given that we are only considering lattices up to homethety, we may assume without
loss of generality that L = [1, τ ], and we can always write O = [1, ω] for some imaginary
quadratic integer ω. If End(EL) = O, then we must have ω · 1 = ω ∈ L, so ω = m + nτ ,
for some m,n ∈ Z. Thus nL = [n, ω − m] = [n, ω], which means that L is homothetic
to a sublattice of O (of index n). This sublattice must be closed under multiplication by
O, which implies that L is homothetic to an O-ideal (recall that an O-ideal is additive
subgroup of O closed under multiplication by O, equivalently, any O-submodule of O).

But the situation is a bit more complicated than it appears, for two reasons. First, two
sublattices [m,ω] and [n, ω] of O may be homothetic even when m 6= n. For example, if
O = Z[i] and ω = i, then

(1 + i)[m, i] = [m+mi, i− 1] = [2m, 2mi] = 2m[1, i],
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so [m, i] = 2m
1+i [1, i] is homothetic to O, as is [n, i] = 2n

1+i [1, i]. This is a direct consequence
of the fact that Z[i] is a principal ideal domain (PID), which implies that every ideal in Z[i]
is homothetic to Z[i] as a lattice. Of course most imaginary quadratic orders are not PIDs
(including all but two of the orders2 in Q(i)), but even when this is not the case there are
only finitely many non-homothetic ideals in O (as discussed below), even though there are
infinitely many distinct O-ideals.

The second complication is that while every lattice L for which End(EL) = O is an
O-ideal, the converse does not hold (unless O is the maximal order OK). If we start with
an arbitrary O-ideal L, it is clear that the set

O(L) := {α ∈ C : αL ⊆ L} = {α ∈ K : αL ⊆ L}

is an order in in K: note that O ⊆ O(L) = End(EL), since the O-ideal L is closed under
multiplication by O, and this implies that End0(EL) = K. But it is not necessarily true that
O(L) is equal to O; unless O = OK we can always find an O-ideal L for which O(L) strictly
contains O (Problem Set 9 asks for an explicit example). This motivates the following
definition.

Definition 17.6. Let O be an order in an imaginary quadratic field K, and let L be an
O-ideal. We say that L is a proper O-ideal if O(L) = O.

Given that we are only interested in lattices up to homethety, we shall regard two O-
ideals as equivalent if they are homothetic as lattices. A homethety L′ = λL between
lattices that are O-ideals can always be written with λ = a/b for some a, b ∈ O. To see
this, note that if L = [ω1, ω2] then we can take α = λω1 ∈ O and β = ω1. Thus homethetic
O-ideals L and L′ always satisfy an equation aL = bL′ for some a, b ∈ O. This motivates
the following definition.

Definition 17.7. Let O be an order in an imaginary quadratic field. Two O-ideals a and b
are said to be equivalent if γa = δb for some γ, δ ∈ O; we can also write this as (γ)a = (δ)b,
where (γ) and (δ) denote principal ideals and (γ)a and (γ)δ are ideal products.

Recall that the product of two O-ideals a and b is the ideal generated by all products
ab with a ∈ a and b ∈ b, and that ideal multiplication is commutative and associative. It
is enough to consider products of generators, so if a = [a1, a2] and b = [b1, b2], then ab is
the ideal generated by the four elements a1b1, a1b2, a2b1, a2b2. Since ab is an O-ideal, it is
a free Z-module of rank 2 and be written as a lattice [c1, c2], where c1 and c2 are O-linear
combinations of a1b1, a1b2, a2b1, a2b2. Note that ideal multiplication respects equivalence:

αa = βb and γc = δd =⇒ αγac = βδcd.

Definition 17.8. Let O be an order in an imaginary quadratic field. The ideal class group
cl(O) is the multiplicative group of equivalence classes of proper O-ideals.

Remark 17.9. One can also define cl(O) using fractional O-ideals, which are the lattices
in K that are homothetic to O-ideals (so of the form 1

aa for some nonzero a ∈ O and O-ideal
a), equivalently, finitely generated O-modules that lie in K. One then defines cl(O) as the
quotient of the group of invertible fractional O-ideals modulo principal fractional O-ideals.

2This is an important point to remember: not all orders are maximal orders. Even fields of class number
one contain infinitely many orders that are not principle ideal domains.
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This approach is used in most number theory textbooks, but the definition in terms of
equivalence classes of proper O-ideals is better motivated in our setting and follows the
historical development of the subject. For practical computations (and many theoretical
applications), it is most efficient to represent cl(O) using binary quadratic forms that corre-
spond to proper O-ideals, modulo an equivalence relation that corresponds to equivalence
of O-ideals; this correspondence is explored in Problem Set 9.

It is not a priori clear that the set cl(O) is actually a group. It is clearly closed under
an associative multiplication and contains an identity element (the class of principal ideals),
hence an abelian monoid, but it s not immediately obvious that every element has an inverse.
We will give an explicit proof of this in the next lecture (an alternative proof is given in
Problem Set 9, where it is also shown that cl(O) is finite).

Even without necessarily knowing that cl(O) is a group, our discussion above makes the
following proposition clear.

Theorem 17.10. Let O be an order in an imaginary quadratic field. There is a one-to-one
correspondence between elements of the ideal class group cl(O) and homethety classes of
lattices L ⊆ C for which End(EL) ' O.

17.3 Discriminants

To streamline our work with imaginary quadratic orders, we define the discriminant of O,
which is a negative integer that is a square modulo 4 that uniquely determines O.

Definition 17.11. The discriminant of an imaginary quadratic order O = [α, β] is

disc(O) = det

(
α β
ᾱ β̄

)2

.

Lemma 17.12. Let O = [α, β] be an order in an imaginary quadratic field. The discrimi-
nant disc(O) does not depend on the choice of basis [α, β] and it is a negative integer that
is a square modulo 4.

Proof. We may regard C as an R-vector space embedded in R3 via maps 1 7→ (1, 0, 0) and
i 7→ (0, 1, 0). Under this embedding α and β, correspond to the vectors ~α = (reα, imα, 0)
and ~β = (reβ, imβ, 0), and the magnitude of their cross product is

|~α× ~β| = |(0, 0, reα imβ − reβ imα)| = | im(αβ̄ − βᾱ)/2|,

which we note is the area of the the parallelogram spanned by α and β. We also have

|disc(O)| = |(αβ̄ − βᾱ)2| = | im(αβ̄ − βᾱ)|2,

thus
|disc(O)| = 4|~α× ~β|2.

The RHS is 4 times the square of the area of a fundamental parallelogram of the lattice O,
which is independent of the choice of basis, and the sign of disc(O) is always negative, since
αβ̄ − βᾱ is purely imaginary. Thus disc(O) is independent of the choice of basis.

7



Let us now writeO = [1, τ ], where τ is an algebraic integer satisfying an integer quadratic
equation x2 + bx+ c with b2 − 4c < 0 not a perfect square. We then have

disc(O) = det

(
1 τ
1 τ̄

)2

= (τ̄ − τ)2 = τ̄2 − 2τ τ̄ + τ2

= −(bτ̄ + c)− 2c− b(τ + c) = −b(τ + τ̄)− 4c

= b2 − 4c, (2)

which shows that disc(O) is a negative integer that is a square modulo 4.

Definition 17.13. A negative integer D that is a square modulo 4 is an (imaginary
quadratic) discriminant. Discriminants that are not the product of a square and a dis-
criminant are said to be fundamental ; every discriminant can be written uniquely as the
product of a square and a fundamental discriminant.

For D ≡ 1 mod 4 the property of being a fundamental discriminant is equivalent to
being square-free. For D ≡ 0 mod 4, if D/4 is square-free and not a discriminant, then D
is a fundamental discriminant.

There is a one-to-one relationship between imaginary quadratic discriminants and orders
in imaginary quadratic fields; fundamental discriminants correspond to maximal orders.

Theorem 17.14. Let D be an imaginary quadratic discriminant. There is a unique imag-
inary quadratic order O with disc(O) = u2DK , where DK is the fundamental discriminant
of the maximal order OK in K = Q(

√
disc(O)), and u = [OK : O] is the conductor of O.

Proof. WriteD = disc(O) asD = u2DK , with u ∈ Z>0 andDK a fundamental discriminant.
Let K = Q(

√
D), and let OK be its maximal order. Choose a shortest non-integer vector

ω ∈ OK , with minimal polynomial x2 + bx + c, so that OK = [1, ω]. Then b2 − 4c must
equal DK : if not, we could make ω shorter by replacing it with ω/v, where b2−4c = v2DK ,
since then v|b, v|c and ω/v is a root of x2 + (b/v)x + c/b ∈ Z[x] hence an element of OK .
From (2) we see that disc(OK) = DK . The order O = [1, uω] then has discriminant
(uω̄ − uω)2 = u2DK = D.

Conversely, if O = [1, τ ] is any order with discriminant D, than τ must be the root of a
quadratic equation with discriminant D, by (2); therefore τ ∈ K and O ⊆ OK . We must
have [OK : O] = u, since disc(O) = u2disc(OK) and the discriminant is proportional to
the square of the area of a fundamental parallelogram. Lemma 17.15 implies uOk ⊆ O, so
uω ∈ O, and therefore [1, uω] ⊆ [1, τ ]. Equality must hold, since both orders have index u
in OK . Thus [1, τ ] = [1, uω], so [1, uω] is the unique order of discriminant D.

Lemma 17.15. If L′ is an index n sublattice of L then nL is an index n sublattice of L′.

Proof. Without loss of generality, we may assume L = [1, τ ] and L′ = [a + bτ, c + dτ ]. As
shown in the proof of Theorem 17.14, for any complex lattice [ω1, ω2] the area of its funda-
mental parallelogram is given by | im(ω1ω̄2−ω2ω̄1)|/2. Comparing areas of the fundamental
parallelograms of L and L′, we have

n| im(τ − τ̄)|/2 = | im((a+ bτ)(c+ dτ̄)− (c+ dτ)(a+ bτ̄))|/2
n| im τ | = |(a+ b re τ)d im τ − (c+ d re τ)b im τ |

n = |ad− bc|,

Thus d(a+ bτ)− b(c+ dτ) = ±n and a(c+ dτ)− c(a+ bτ) = ±nτ , therefore nL ⊆ L′. We
then have [L : L′] = n and [L : L′][L′ : nL] = [nL : L] = n2, so [L′ : nL] = n.
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