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12 Primality proving

In this lecture, we consider the following problem: given a positive integer N , how can we
efficiently determine whether N is prime or not? This question is intimately related to the
problem of factoring N ; without a method for determining primality, we have no way of
knowing when we have completely factored N . This is an important issue for probabilistic
factorization algorithms such as ECM: if we attempt to factor a prime number N with
ECM, the algorithm will never terminate. This problem is not unique to ECM; currently
every known factorization algorithm that achieves a subexponential running time (even
heuristically) is a randomized algorithm; in the absence of an explicit primality test most
of these algorithms will simply fail to terminate on prime inputs.

Even if we are able to guarantee termination, there is still the issue of correctness. If a
Monte Carlo algorithm outputs the factorization N = pq, it is easy to check whether the
product of p and q is in fact equal to N . But how do we know that this is the complete
factorization of N? We need a way to unequivocally prove that p and q are both prime.

12.1 Classical primality tests

The most elementary approach to the problem is trial division: attempt to divide N by
every integer p ≤

√
N . If no such p divides N , then N must be prime. This takes time

O(
√
NM(logN)), which is exponential in logN .

Remark 12.1. This complexity bound can be slightly improved. Using fast sieving tech-
niques [8, Alg. 3.2.2], we can enumerate the primes p up to

√
N in O(

√
N logN/ log logN)

time and then perform trial divisions by just the primes p ≤
√
N . Applying the prime

number theorem and the Schönhage-Strassen bound, the sieving time dominates the cost of
the divisions and the overall complexity of trial division becomes O(

√
N logN/ log logN).

Many classical primality tests are based on Fermat’s little theorem.

Theorem 12.2 (Fermat). If N is prime, then for all a ∈ Z/NZ:

aN = a.

This implies that if aN 6= a for some a ∈ Z/NZ, then N cannot be prime. This gives us
a way to efficiently prove that certain integers are composite. For example, N = 91 is not
prime, since:

291 ≡ 37 mod 91.

But this does not always work. For example, 341 = 11 · 31 is not clearly not prime, but

2341 ≡ 2 mod 341.

In this case, using a different value of a will work:

3341 ≡ 168 mod 341

proves that 341 is not prime.
However, for certain composite integers N there is no choice of a that will work. Thus

even if aN ≡ a mod N for every integer a, we cannot be sure that N is prime.
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Definition 12.3. A Carmichael number is a composite integer N such that aN ≡ a mod N
for every integer a.

The first four Carmichael numbers are 561, 1105, 1729, and 2821; for more, see sequence
A002997 in the On-Line Encyclopedia of Integer Sequences (OEIS). The largest known
Carmichael number has about 300 billion decimal digits and more than 10 billion distinct
prime factors [5]. The question of whether or not there are infinitely many Carmichael
numbers was open for more than 80 years and finally settled in 1994.

Theorem 12.4 (Alford-Granville-Pomerance). The set of Carmichael numbers is infinite.

Proof. See [6].

The infinitude of Carmichael numbers implies that any approach based on Fermat’s
little theorem is doomed to fail for an infinite set of integers. We would like a criterion that
is true if, and only if, N is prime. One candidate is the following theorem, which uses the
Euler function φ(N) = |Z/NZ∗|.

Theorem 12.5. A positive integer N is prime if and only if φ(N) = N − 1.

Proof. The forward implication is clear: if N is prime, then φ(N) = N−1. For the converse,
we note that φ(1) = 1 6= 1 − 1 and 1 is not prime, and if N = pk, for some prime p and
integer k > 1, then we have

φ(N) = φ(pk) = pk − pk−1 < pk − 1 = N − 1.

Otherwise, we may write N = ab with a ⊥ b and the multiplicativity of φ implies

φ(N) = φ(ab) = φ(a)φ(b) ≤ (a− 1)(b− 1) < ab− 1 = N − 1.

One approach suggested by this theorem is to simply compute φ(N) and see whether
it is equal to N − 1. However, computing φ(N) is very difficult, in general.1 Fortunately,
we can use Theorem 12.5 in a less obvious way, via the following lemma. We restrict our
attention to odd integers, since it is easy to tell whether an even integer is prime or not.

Lemma 12.6. Let p = 2st+ 1 be prime, with t odd, and let a be an integer that is nonzero
modulo p. Exactly one of the following holds:

(i) at ≡ 1 mod p, or

(ii) a2
it ≡ −1 mod p, for some 0 ≤ i < s.

Proof. The map ϕ : x 7→ xt is an endomorphism of the cyclic group (Z/pZ)× of order
2st. The kernel of ϕ is cyclic of order t, and its image is thus cyclic of order 2s. For any
a ∈ Z/pZ∗, either a ∈ kerφ, in which case (i) holds, or ϕ(a) has order 2k for some 0 < k < s.
In the latter case, for i = k − 1 the integer a2

it has order 2 in (Z/pZ)× and must be equal
to −1, which is the unique element of order 2, and then (ii) holds.

Definition 12.7. Let N = 2st+ 1 be an odd integer, with t odd. An integer a 6≡ 0 mod N
is a witness for (the compositeness of) N if both of the following hold:

(i) at 6≡ 1 mod N (ii) a2
it 6≡ −1 mod N for 0 ≤ i < s.

1If N is the product of two primes, it is easy to show that computing φ(N) is as hard as factoring N ,
and under the Extended Riemann Hypothesis, this is true in general [12].
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If a is a witness for an integer N , then N must be composite, by Lemma 12.6, and we
say that a witnesses the compositeness of N . Prime numbers clearly have no witnesses. It
is not immediately clear that every composite integer N necessarily has any witnesses, but
this is true. In fact, if we pick a at random it is quite likely to be a witness, as independently
proved by Monier [13] and Rabin [16].

Theorem 12.8 (Monier–Rabin). Let N be an odd composite integer. The probability that
a random integer a ∈ [1, N − 1] is a witness for N is at least 3/4.

The theorem suggests that if N is composite and we pick, say, 100 random integers
a ∈ [1, N − 1], then we are almost certainly going to find a witness for N . On the other
hand, if N is prime then we will not find a witness. This doesn’t actually prove that N is
prime (unless we try more than 1/4 of all a ∈ [1, N − 1]), but we can at least view it as
strongly supporting this possibility.

Proof. 2 Let N be an odd composite number of the form N = 2st + 1 with t odd, and let
N = q1 · · · qr be the factorization of N into powers of distinct primes. Let us consider a
particular a ∈ [1, N − 1], and let b = at. If a is not a witness then either b ≡ 1 mod N , in
which case b ≡ 1 mod qj for all of the qj , or b2

i ≡ −1 mod N for some 0 ≤ i < s, in which

case b2
i ≡ −1 mod qj for all of the qj . In either case, b mod qj is an element of the 2-Sylow

subgroup of (Z/qjZ)× for all qj , and it has order 2i+1 in (Z/qjZ)× for each qj (with i = −1
in the first case). We will show that the probability of this happening for a random choice
of a is at most 1/4. We consider three cases.

Case 1: N is not square-free. Then some qj = pk with k > 1. Since p is odd, the
group (Z/pkZ)× is cyclic of order φ(pk) = pk−1(p− 1). The prime p cannot divide t, since
t divides N − 1 and p divides N . It follows that if a has order divisible by p in (Z/pkZ)×,
then so does b = at, and in this case b cannot be an element of the 2-Sylow subgroup of
(Z/pkZ)×. Thus the probability that b lies in the 2-Sylow subgroup of (Z/pkZ)× is at most
1/pk−1, which is less than 1/4 for all pk > 9. For pk = 9 one checks that for t = ± mod 6,
at most 2/9 < 1/4 of the possible values of a mod 9 yield b = at = ±1 mod 9 in the 2-Sylow
subgroup of (Z/9Z)×.

Case 2: r ≥ 3. For each qj the 2-Sylow subgroup Gj of (Z/qjZ)× is a cyclic of order 2kj ,
for some kj > 1, and at most half the elements in Gj have any particular order. Assuming
b = at mod qj lies in Gj for j = 1, 2, 3, the probability that it has the same order in each
case is at most 1/4.3

Case 3: N = pq for distinct primes p and q. We may write p = 2sptp+1, and q = 2sq tq+1,
with tp and tq odd. Define the random variable Xp to be −1 if b mod p does not lie in the
2-Sylow subgroup Gp of (Z/pZ)×, and otherwise let Xp = i, where b mod p has order 2i in
Gp. Similarly define the random variable Xq. We wish to show that Pr[Xp = Xq ≥ 0] ≤ 1/4.

We first suppose sp > sq. Half the elements in the 2-Sylow subgroup of (Z/pZ)×) have
order 2sp > 2sq , so Pr[0 ≤ Xp ≤ sq] ≤ 1/2. We also have Pr[Xq = Xp|0 ≤ Xp ≤ sq] ≤ 1/2,
thus Pr[Xp = Xq ≥ 0] ≤ 1/4.

We now suppose that sp = sq. We have

2st = N − 1 = pq − 1 = (p− 1)(q − 1) + (p− 1) + (q − 1) = 2stptq + 2sptp + 2sptq,

so if tp divides t then it divides tq and conversely. It follows that tp and tq cannot both
divide t (if this were true then we would have tp = tq and p = q but we assumed p 6= q). So

2The proof we give here is a bit different (and more elementary) than the proofs of Monier and Rabin.
3This rules out all Carmichael numbers, since they all have at least 3 distinct prime factors.
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we may assume without loss of generality that tp does not divide t. This means tp 6= 1, so tp
is divisible by an odd prime ` ≥ 3 that does not divide t. It follows that Pr[Xp ≥ 0] ≤ 1/3,
and we also have Pr[Xq = Xp|Xp ≥ 0] ≤ 1/2, hence Pr[Xp = Xq ≥ 0] ≤ 1/6 < 1/4.

Theorem 12.8 yields the following probabilistic primality test, due to Gary Miller [12]
and Michael Rabin [16]

Algorithm 12.9 (Miller-Rabin). Given an odd integer N :

1. Pick a random integer a ∈ [1, N − 1].

2. Write N = 22t+ 1, with t odd, and compute b = at mod N .
If b ≡ ±1 mod N , return true (a is not a witness, N could be prime).

3. For i from 1 to s− 1:

a. Set b← b2 mod N .

b. If b ≡ −1 mod N , return true (a is not a witness, N could be prime).

4. Return false (a is a witness, N is definitely not prime).

Example 12.10. For N = 561, a = 2: 561 = 24 · 35 + 1. Thus, we compute:

235 ≡ 263 mod 561

This is not ±1 mod 561 so we continue:

2362 ≡ 166 mod 561

1662 ≡ 67 mod 561

672 ≡ 1 mod 561

None of these values is congruent to −1, so a = 2 is a witness for N = 561 and we
return false, meaning that 561 is definitely not a prime. Note the contrast with the Fermat
test, which effectively just checks whether the last value computed above is 1 and does not
detect that 561 is composite.

The Miller-Rabin test as a Monte Carlo algorithm with 1-sided error. If N is prime
the algorithm will always correctly output true, and if N is composite the algorithm will
correctly output false with probability at least 3/4. The running time of the algorithm
is O(nM(n)), where n = logN , the same as exponentiation in Z/NZ. This makes it
extremely efficient, and it is the most widely used method for testing primality. In practical
implementations, one performs several iterations of the Miller-Rabin test (choosing a new
random integer a each time), and if they all return true, conclude that N is “probably
prime”.

But we should be careful how we interpret this. For any particular integer N , either N
is prime or it isn’t; it makes no sense to say that N is prime with some probability. If N
is a random integer distributed over some interval, then it does make sense to ask for the
probability that N is prime, given that it passed a Miller-Rabin test. However, if N is
selected from a large interval, say [1, e1000], then the probability that N is prime is quite
small, approximately 1/1000. In this situation, we need to be careful, since false positives
are more likely than primes. It might appear to require several Miller-Rabin tests before
we could say with better than 50% confidence that a large random integer N is prime.
However, the Miller-Rabin test is actually much more effective than Theorem 12.8 suggests.
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Theorem 12.11 (Damg̊ard-Landrock-Pomerance). Let N be a random odd integer in
[2k−1, 2k]. Let a be a random integer in [1, N − 1]. Then, if a is not a witness for N ,
then

Pr[N is prime] ≥ 1− k2 · 42−
√
k.

Proof. See [9, Thm. 2].

Example 12.12. For large N , Theorem 12.11 gives excellent bounds on the probability
that a random integer N is prime, given that it passes a single Miller-Rabin test:

If k = 256, then 1− k2 · 42−
√
k ≥ 1− 2−12.

If k = 1024, then 1− k2 · 42−
√
k ≥ 1− 2−40.

Thus when k is large it only takes a few successful Miller-Rabin tests to become astronom-
ically confident that a randomly chosen integer N is prime.

12.2 Elliptic Curve Primality Proving

We now consider a method to unqeuivocally prove whether a given integer N is prime
or composite, using elliptic curves. Elliptic curve primality proving (ECPP) is based on
a fundamental theorem of Goldwasser and Kilian [10]. To simplify the statement of the
theorem, we make the following definitions.

Definition 12.13. Let P = (x : y : z) be a projective point on an elliptic curve E/Q,
where x, y, z ∈ Z, and let N be a nonzero integer. If z ≡ 0 mod N then the point P is said
to be zero mod N ; otherwise, P is nonzero mod N . If gcd(z,N) = 1 then the point P is
said to be strongly nonzero mod N .

Note that if P is strongly nonzero mod N , then P is nonzero mod p for every prime
p|N . When N is prime, the notions of nonzero and strongly nonzero coincide. We now state
the theorem, using ∆(E) to denote the discriminant of E (so ∆(E) = −16(4A3 + 27B2) for
E : y2 = x3 +Ax+B in Weierstrass form).

Theorem 12.14 (Goldwasser-Kilian). Let E/Q be an elliptic curve, and let M and N be
positive integers with M > (N1/4 + 1)2 and N prime to ∆(E). Suppose there is a point
P ∈ E(Q) such that MP is zero mod N and (M/`)P is strongly nonzero mod N for every
prime `|M . Then N is prime.

Proof. Suppose for the sake of contradiction that the hypothesis holds and N is composite.
Then N has a prime divisor p ≤

√
N , and E has good reduction at p since N is prime

to ∆(E). Let Mp be the order of the reduction of P on E modulo p. The point MP is zero
mod N and therefore zero mod p, so Mp|M ; and we must have Mp = M , since (M/`)P is
strongly nonzero mod N and therefore nonzero mod p, for every prime `|M . Thus P has
order M on the reduction of E modulo p, and by the Hasse bound M ≤ (

√
p+ 1)2. But we

also have M > (N1/4 + 1)2 ≥ (p1/2 + 1)2, which is our desired contradiction.

In order to apply the theorem, we need to know the prime factors q of M . In particular,
we need to be sure that these q are actually prime! To simplify matters, we restrict ourselves
to the case that M = q is prime, and introduce the notion of a primality certificate.

Definition 12.15. A primality certificate for p is a tuple of integers

(p,A,B, x1, y1, q),
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where P = (x1 : y1 : 1) is a point on the elliptic curve E : y2 = x3 + Ax + B over Q, the
positive integer p is prime to ∆(E), and q > (p1/4 + 1)2 is such that qP is zero mod p.

Note that P = (x1 : y1 : 1) is always strongly nonzero mod p, since its z-coordinate is 1.
Theorem 12.14 implies that if there exists a primality certificate (p, . . . , q) for N = p in
which M = q is prime, then p is prime. Thus a primality certificate (p, . . . , q) reduces the
question of p’s primality to the question of q’s primality. Using a chain of such certificates,
we can reduce to a case in which q is so small that we are happy to test its primality via
trial division. This leads to the following recursive algorithm.

Algorithm 12.16 (Goldwasser-Kilian). Given an odd integer p (a candidate prime), and
a bound b, with p > b > 5, either construct a primality certificate (p,A,B, x1, y1, q) with
q ≤ (

√
p+ 1)2/2, if p is prime, or return composite if p is composite.

1. Pick random integers A, x0, y0 ∈ [0, p− 1], and set B = y20 − x30 −Ax0.
Repeat until gcd(4A3 + 27B2, p) = 1, then define E : y2 = x3 +Ax+B.

2. Use Schoof’s algorithm to compute the number of points m on the reduction of E
modulo p, assuming that p is prime. If anything goes wrong, or if m 6∈ H(p), then
return composite.

3. Write m = cq, where l - c for primes l > b and l - q for primes l ≤ b.
If c = 1 or q ≤ (p1/4 + 1)2, then go to step 1.

4. Perform a Miller-Rabin test on q. If it returns false then go to step 1.

5. Compute P = (Px : Py : Pz) = c · (x0 : y0 : 1) on E, working modulo p.
If gcd(Pz, p) 6= 1, go to step 1, else set x1 = Px/Pz mod p and y1 = Py/Pz mod p.

6. Compute Q = (Qx : Qy : Qz) = q · (x1 : y1 : 1) on E, working modulo p.
If Qz 6≡ 0 mod p then return composite.

7. If q > b, then recursively verify that q is prime using inputs q and b; otherwise, verify
that q is prime by trial division. If q is found to be composite, go to step 1.

8. Output the certificate (p,A, B̃, x1, y1, q), where B̃ ≡ B mod p is chosen so that we
have y21 = x31 +Ax1 + B̃ (over Z not just modulo p).

Note that step 4 is not strictly necessary, a composite q would eventually be detected
in the recursive call, but it greatly reduces the probability that we will waste time in the
recursive call, which speeds up the algorithm.

When the input to Algorithm 12.16 is prime, it will output a sequence of certificates,
one for each recursive call, that reduce the question of p’s primality to that of a prime q < b
that has been proved prime via trial division. Taken together, the sequence of primality
certificates constitute a primality proof for p. The complexity of this algorithm, and the
complexity of verifying the primality proof it generates, are considered in the problem set,
under the heuristic assumption that the integer M behaves like a random integer.

Without any heuristic assumptions, Goldwasser and Kilian proved that for almost all
inputs p of a given size (all but a subexponentially small fraction), the expected running
time of this algorithm is polynomial in log p. Heuristically, this is believed to be true for all
inputs, but we cannot prove this. Adleman and Huang later came up with a clever work-
around to this problem that yielded an algorithm with a provably polynomial expected
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running time for all inputs [4]. Their strategy is to “reduce” the problem of proving the
primality of the given input p that of proving the primality of a larger prime p′ ≈ p2. The
prime p′ is obtained in a random way, making it very likely that the Goldwasser-Kilian
algorithm can prove its primality within a polynomial time bound (and if this does not
happen we can always generate a different p′ and try again). In practice the algorithm of
Adleman and Huang is never used, since it is believed that it in fact it is always faster to
use the original Goldwasser-Kilian algorithm, no matter what p is. But their result was
theoretically significant, since it proved for the first time that primes could be recognized
in polynomial time by a randomized algorithm.

Remark 12.17. In [4] Adleman and Huang obtain the prime p′ as the order of a randomly
chosen abelian variety JC of dimension 2 that is associated to a genus 2 curve C over Fp

(assuming that p is prime). The abelian variety JC is called the Jacobian of the curve C, and
is analogous to the group of points on an elliptic curve (an abelian variety of dimension 1),
except that when C has genus 2 the “points” on JC actually correspond to pairs of points
on the curve C. There is a generalization of Hasse’s theorem due to Weil that implies
that the cardinality of JC(Fp) is on the order of p2 and lies within an interval of width
≈ 8p3/2. This interval is large enough (relative to p2) that we can prove that it contains
many primes, roughly as many as implied by the prime number theorem. Adleman and
Huang show that for a random curve C, the cardinality of JC(Fp) is reasonably likely to
be any one of a large subset of these primes, yielding a prime p′ that is very likely to be
one that the Goldwasser-Kilian algorithm can certify in polynomial time. In order to make
this all work, Adleman and Huang modify the Goldwasser-Kilian algorithm slightly to make
the proportion of bad inputs even smaller, and they also use the fact that #JC(Fp) can be
computed in polynomial time using an analog of Schoof’s algorithm.

In fact, the original algorithm of Goldwasser-Kilian is no longer used; there is a faster
version of this algorithm due to Atkin and Morain that uses the CM method to construct
an elliptic curve E modulo p with suitable order M (assuming that p is prime), eliminating
the need to generate many random curves, and the need to use Schoof’s algorithm [3]. Like
the Goldwasser-Kilian algorithm, this algorithm has not been proved to run in expected
polynomial time, but in practice it is very fast. When combined with a further optimization
due to Shallit [14], its expected running time is heuristically believed to be Õ(n4), where
n = log p. This makes it the current method of choice for general purpose primality proving.
We will be able to examine the Atkin-Morain algorithm more closely after we have studied
the theory of complex multiplication.

We should note that a deterministic polynomial-time algorithm for proving primality
was later developed by Agrawal, Kayal, and Saxena [2]. This is an important theoretical
result, but is not used in practice. The time bound proved in [2] is Õ(n10.5); this can
be improved to Õ(n6) (see [11]), but this is still much slower than the Õ(n4) heuristic
complexity of (fast) ECPP. There is a randomized version of the AKS algorithm due to
Bernstein [7] that runs in Õ(n4) time, but the constant factors appear to make it slower
than ECPP, and it requires more memory. The certificates it produces also take longer to
verify: Õ(n4) versus Õ(n3).

The current record for general purpose elliptic curve primality proving involves a 29,271
digit prime and was set in December 2014 (see [15] for an up-to-date list of ECPP records).
We should note that there are much larger integers that have been proved prime (for exam-
ple, the Mersenne prime 257,885,161−1), but these are all of a special form that permit much
faster Õ(n2)-time algorithms to be applied. There are also specialized forms of elliptic curve
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primality proving that run in Õ(n2)-time and these have been used to prove the primality
of some very large integers for which no non-elliptic curve based method is applicable; the
largest such prime has 419,110 digits [1].
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