
18.783 Elliptic Curves Spring 2013
Lecture #12 03/19/2013

Andrew V. Sutherland

We now consider our first practical application of elliptic curves: factoring integers.
Before presenting the elliptic curve method (ECM) for factoring integers, we first present
an older algorithm of Pollard that motivates the ECM approach.

12.1 Pollard p− 1 method

In 1974, Pollard introduced a randomized (Monte Carlo) algorithm for factoring integers [6].
It makes use of a smoothness parameter B.

Algorithm 12.1 (Pollard p− 1 factorization).
Input: An integer N to be factored and a smoothness bound B.
Output: A proper divisor of N or failure.

1. Pick a random integer a ∈ [1, N − 1].

2. If d = gcd(a,N) is not 1 then return d.

3. Set b = a and for each prime ` ≤ B:

a. Set b = b`
e

mod N , where `e−1 < N ≤ `e.
b. If d = gcd(b− 1, N) is not 1 then return d if d < N or failure if d = N .

4. Return failure

Rather than using a fixed bound B, we could simply let the algorithm keep running
through primes ` until it either succeeds or fails in step 3b. But in practice one typically
uses a very small smoothness bound B and switches to a different algorithm if the p − 1
method fail. In any case, it is convenient to have B fixed for the purposes of analysis.

Theorem 12.2. Let p and q be prime divisors of N , and let `p and `q be the largest prime
divisors of p− 1 and q− 1, respectively. If `p ≤ B and `p < `q then Algorithm 12.1 succeeds
with probability at least 1− 1

`q
.

Proof. If a ≡ 0 mod p then the algorithm succeeds in step 2, so we may assume a ⊥ p.
When the algorithm reaches ` = `p in step 3 we have b = am, where m =

∏
`≤`p `

e is a
multiple of p − 1. By Fermat’s little theorem b = am ≡ 1 mod p and therefore p divides
b − 1. But `q does not divide m, so with probability at least 1 − 1

`q
we have b 6≡ 1 mod q,

in which case 1 < gcd(b− 1, N) < N in step 3b and the algorithm succeeds.

For most values of N , the Algorithm 12.1 is guaranteed to succeed if it uses the smooth-
ness bound B =

√
N . But it will still fail if N is a prime power, or if the largest prime

dividing p− 1 is the same for every prime factor p of N .
In the best case, the algorithm can succeed very quickly. As demonstrated in the Sage

worksheet https://hensel.mit.edu:8002/home/pub/8/, if N = p1p2 where p1 and
p2 are 500-bit primes, if p1− 1 happens to be very smooth then Alogorithm 12.1 can factor
N very quickly, whereas most other methods have no hope of factoring N in a reasonable
amount of time. However, in the worst-case the running time is O(π(B)M(logN) logN)

https://hensel.mit.edu:8002/home/pub/8/

and we may need to use B =
√
N The complexity is then O(

√
NM(logN)) time, which is

the same complexity as trial division.
But rather than focusing on factoring a single number, let us consider a slightly different

problem. Suppose we have a large set of composite integers (e.g. a set of RSA moduli), and
our goal is to factor any one of them. How long would this take if we simply applied the
p− 1 method to each integer one-by-one, using a suitably chosen smoothness bound B?

For a given value of B, the expected time for the algorithm to achieve a success is

O(π(B)M(logN) logN)

Pr[success]
. (1)

Let p be a prime factor of N . The algorithm is very likely to succeed if p− 1 is B-smooth,
since it is very unlikely that all the other prime factors q of N have q − 1 with the exact
same largest prime factor as p − 1. Let us heuristically assume that integers of the form
p− 1 are at least as likely to be smooth as a random integer of similar size (arguably they
are slightly more likely, since, for example, they must be divisible by 2). By the Canfield-
Pomerance-Erdős Theorem, the probability that a random integer less than N is B-smooth
is u−u+o(u), where u = logN/ logB. If we ignore the o(u) error term and factors that are
polynomial in logN (which will be bounded by o(u) in any case), we may simplify (1) to

N1/uuu. (2)

To pick a value of u that minimizes (2), we take logarithms and set the derivative to 0:

d

du

(
1

u
logN + u log u

)
= 0

− logN

u2
+ log u+ 1 = 0

u2(log u+ 1) = logN

If we set u =
√

2 logN/ log logN then the difference between the LHS and the RHS is o(1),
which is asymptotically negligible. Thus we should use the smoothness bound

B = N1/u = exp
((

1/
√

2 + o(1)
)√

logN log logN
)

= LN [1/2, 1/
√
2],

where the o(1) term incorporates the o(u) error term and the factors polynomial in logN
that we have ignored. We also have uu = exp(u log u) = LN [1/2, 1/

√
2], and the total expected

running time is
N1/uuu = LN [1/2, 1/

√
2]LN [1/2, 1/

√
2] = LN [1/2,

√
2].

Thus even though the p−1 method has an exponential worst-case running time, if we apply
it to a sequence of random integers we can achieve a subexponential running time. But this
isn’t much help if we have a particular integer N that we want to factor.

12.2 The elliptic curve method for factoring integers (ECM)

Using elliptic curves we can effectively achieve the randomized scenario envisioned above
even for a single fixed N . The Pollard p−1 method achieves a subexponential running time
when the group (Z/NZ)∗ varies with each iteration. With the elliptic curve factorization
method (ECM), introduced by Hendrik Lenstra [4], a heuristically subexponential running

time is achieved by varying an elliptic curve E/Q that we reduce modulo a fixed integer N .
Now the groups we are effectively working in are of the form E(Fp), where p is a prime
divisor of N . Even though the primes p remain fixed, the number of points on the curve
E(Fp) will vary as we vary the curve E.

The algorithm is essentially the same as Pollard’s p− 1 method. Rather than exponen-
tiating a random element of (Z/NZ)∗ to a large smooth power and hoping that it becomes
the identity modulo some prime p dividing N , we instead multiply a random point on an
elliptic curve by a large smooth scalar and hope that it becomes the identity modulo some
prime p dividing N . The key advantage is that if this doesn’t happen we can simply try a
different curve, without changing N .

As in Pollard’s algorithm, we don’t know the value of p, we work modulo N and use
gcd’s to find a factor of N . If P is a point on E/Q and Q = mP = (Qx : Qy : Qz) is a
multiple of P that reduces to 0 modulo a prime factor of p of N , then p| gcd(Qz, N). Notice
that even though we are working with points on an elliptic curve over Q, we only care
about their reductions modulo primes dividing N , so we can keep the coordinates reduced
modulo N throughout the algorithm.

In order to get a proper divisor of N we also need gcd(Qz, N) 6= N . This is very likely
to be the case, so long as P is not a torsion point of E(Q); if P is a torsion point it will have
the same order modulo every prime divisor of N and we will always have gcd(Qz, N) = N
whenever the gcd is non-trivial. Given an elliptic curve E/Q, it is generally hard to find
non-torsion points in E(Q), in fact there will often not be any.1 Instead we pick integers
x0, y0, a ∈ [1, N − 1] and let b = y20 − x30 − ax0. This guarantees that P = (x0, y0) is a
rational point on the elliptic curve E/Q defined by y2 = x3 + ax + b, and we claim that
with very high probability it is a point of infinite order. To see why, let us consider a prime
p ≈ N (not necessarily a divisor of N). The reduction of the point P modulo p is then
nearly uniformly distributed over the group of rational points on the reduction of E modulo
p, of which there are Ω(p). But only O(1) of these points can be the reduction of a torsion
point (by Mazur’s Theorem, the number of torsion points on an elliptic curve over Q is at
most 16). Thus for large N the probability that P has infinite order is close to 1.

We now give the algorithm.

Algorithm 12.3 (ECM).
Input: An integer N to be factored, a smoothness bound B, and a prime bound M .
Output: A proper divisor of N or failure.

1. Pick random integers a, x0, y0 ∈ [0, N − 1] and set b = y20 − x30 − ax0.

2. If d = gcd(4a3 + 27b2, N) is not 1 then return d if d < N or failure if d = N .

3. Let Q = P = (x0 : y0 : 1).

4. For all primes ` < B:

a. Set Q = `eQ mod N , where `e−1 ≤ (
√
M + 1)2 < `e.

b. If d = gcd(Qz, N) is not 1 then return d if d < N or failure if d = N .

5. Return failure.

1There are standard parameterizations that are guaranteed to produce a curve E/Q with a known point
P ∈ E(Q) of infinite order; see [1], for example. Here we show how to generate random E and P .

The scalar multiplication in step 4a is performed using projective coordinates, and while
it is defined in terms of the group operation in E(Q), we only keep track of the coordinates
of Q modulo N ; the projective coordinates are integers and there are no inversions involved,
so all of the arithmetic is valid modulo N .

Theorem 12.4. Assume 4a3+27b2 is not divisible by N , and let P1 and P2 be the reductions
of P modulo distinct primes p1 and p2 dividing N , with p1 ≤M . Suppose |P1| is `1-smooth
and |P2| is not, for some prime `1 ≤ B. Then Algorithm 12.3 succeeds.

Proof. When the algorithm reaches step 2b with ` = `1 we must have Q = mP , where
m =

∏
`≤`1 `

e is a multiple of |P1|, since |P1| is `1-smooth and |P1| ≤ (
√
p1+1)2 ≤ (

√
M+1)2.

So Q ≡ 0 mod p1, but Q 6≡ 0 mod p2, since |P2| is not `1-smooth. Therefore Qz is divisible
by p1 but not p2 and a proper factor d = gcd(Qz, N) of N will be found in step 4b.

If the algorithm fails, we can simply try again. Heuristically, so long as N is not a
perfect power and has a prime factor p ≤M , we will eventually succeed. The case where N
is a prime power can be efficiently handled using the algorithm of Problem 1 from Problem
Set 3. Provided N is not a prime power and has a prime factor p < M , Algorithm 12.3
is very likely to succeed whenever it picks a triple (x0, y0, a) that yields an elliptic curve
whose reduction modulo p has B-smooth order. So the number of times we expect to run
the algorithm before we succeed depends on the probability that #E(Fp) is B-smooth.

The integer #E(Fp) must lie in the Hasse interval [p− 2
√
p+ 1, p+ 2

√
p+ 1], which is

unfortunately too narrow for us to apply any theorems on the density of B-smooth integers
(we can’t even prove that this interval contains a prime, and the density of primes is far
greater). So to analyze the complexity of Algorithm 12.3 (and to optimize the choice of B),
we resort to the heuristic assumption that, at least when #E(Fp) lies in the narrower
interval [p+ 1−√p+ 1, p+ 1 +

√
p], the probability the #E(Fp) is B-smooth is comparable

to the probability that a random integer in the interval [p, 2p] is B-smooth.2

One can prove that the probability that #E(Fp) lies in [p−√p+1, p+
√
p+1] is at least

1/2 (this is implied, asymptotically, by the Sato-Tate theorem), and further that probability
that #E(Fp) takes on any particular value in this interval is Ω(1/(

√
p log p)). These facts are

both proved in Lenstra’s paper [4], and we will be able to prove them ourselves once we have
covered the theory of complex multiplication. This means that we can make our heuristic
assumption independent of any facts about elliptic curves, we simply need to assume that
a random integer in the interval [p+ 1−√p, p+ 1 +

√
p] has roughly the same probability

of being B-smooth as a random integer in the interval [p, 2p].
Under our heuristic assumption, the analysis of the algorithm follows the analysis of

the Pollard p− 1 method. This algorithm takes O(π(B)(logM)M(logN)) time per elliptic
curve, and if N has a prime factor p ≤ M , it will need to try an average of O(uu) curves
before it finds a factor. As in §12.1, this implies that the optimal value of B is LM [1/2, 1/

√
2],

and with this value of B the expected time to factor N is LM [1/2,
√

2]M(logN). In general,
we may not know a bound M on the smallest prime factor p of N a priori, but if we simply
start with a small choice of M and periodically double it, we can achieve a running time of

Lp[1/2,
√

2]M(logN).

The key point is that this running time depends almost entirely on p rather than N , a
property that distinguishes ECM from all other factorization algorithms with heuristically

2Asymptotically, this is the same as the probability that a random integer in [1, p] is B-smooth.

subexponential running times. There are factorization algorithms such as the quadratic
sieve and the number field sieve that are heuristically faster when all of the prime factors
of N are large, but in practice one first uses ECM to look for any relatively small prime
factors before resorting to these heavyweight algorithms.

The fact that the complexity of ECM depends primarily on the size of the smallest
prime divisor of N makes it a very good algorithm for smoothness testing, something that
is needed as a sub-routine of the quadratic sieve and number field sieve, and by many
other algorithms in computational number theory. Testing whether a given integer N is
LN [1/2, c]-smooth using ECM takes just

LLN [1/2,c]

[
1/2,
√

2
]
≈ exp

(√
2 log(exp(c

√
logN log logN) log log(exp(c

√
logN log logN)

)
= exp

(√
2c
√

logN log logN(1/2 log logN + o(log logN))

)
= exp

(√
c(logN)

1/4(log logN)
3/4
)

= LN

[
1/4 + o(1),

√
c
]

expected time, which is faster than any other method known.3

12.3 Efficient implementation

Algorithm 12.3 spends essentially all of its time performing elliptic curve scalar multiplica-
tions modulo N , so it is worth choosing the elliptic curve representation and the coordinate
system to optimize this operation. Edwards curves, which we saw in Lecture 2, are an
excellent choice; see [3] for a detailed discussion of how to efficiently implement ECM using
Edwards curves. Another popular choice is Montgomery curves [5]. These were originally
introduced specifically for the purpose of optimizing the elliptic curve factorization method
but are now used in many other applications of elliptic curves, including primality proving
and cryptography.

12.4 Montgomery Curves

A Montgomery curve is an elliptic curve defined by an equation of the form

By2 = x3 +Ax2 + x, (3)

where B 6= 0 and A 6= ±2. To convert this to Weierstrass form, let u = Bx and w = B2y.
Substituting x = u/B and y = w/B2 in (3) and multiplying by B3 yields

w2 = u3 +ABu2 +B2u,

which is in the form of a general Weierstrass equation. To obtain a short Weierstrass
equation, we assume our base field has characteristic different from 3 and complete the

3There are faster algorithms for finding smooth numbers within a sufficiently large set of integers; see [2].

cube by letting v = u+ AB
3 . We then obtain

w2 = u3 +ABu2 +B2u

w2 =

(
v − AB

3

)3

+AB

(
v − AB

3

)2

+B2

(
v − AB

3

)
w2 = v3 −ABv2 +

A2B2

3
v − A3B3

27
+ABv2 − 2A2B2

3
v +

A3B3

9
+B2v − AB3

3

w2 = v3 +

(
B2 − A2B2

3

)
v +

(
2A3B3

27
− AB3

3

)
.

In order to check that (3) actually defines an elliptic curve, we should verify that it
is nonsingular. We could do these using the coefficients of the curve in short Weierstrass
form, but it is easier to do this directly. We need to determine whether there are any points
(x : y : z) on the projective curve By2z = x3 + Ax2z + xz2 at which all three partial
derivatives vanish. For any such point we must have

∂

∂x
: 3x2 + 2Axz + z2 = 0

∂

∂y
: 2Byz = 0

∂

∂z
: By2 = Ax2 + 2xz = 0.

We assume we are working in a field of characteristic not equal to 2 or 3. Suppose that
y 6= 0. Then the equation for ∂

∂y gives z = 0, and from ∂
∂x , we get x = 0. But this is a

contradiction, since the equation for ∂
∂z is not satisfied. On the other hand, if y = 0, then

z = −A
2 x 6= 0. We have 3x2 − A2x2 + A2

4 x
2 = 0, and therefore 3 − 3

4A
2 = 0, since x 6= 0.

Thus A2 = 4, but we require A 6= ±2 in (3), so this cannot be the case.

12.5 Montgomery curve group law

The transformation of a Montgomery curve to Weierstrass form is a linear transformation
that preserves the symmetry about the y-axis, so the geometric view of the group law
remains the same: three points on a line sum to zero, which is is the point at infinity.
To add points P1 and P2 we construct the line P1P2 (using a tangent when P1 = P2),
find the third intersection point with the curve, and then reflect over the y-axis to obtain
P3 = P1 +P2. In this section we compute explicit algebraic formulas for this operation, just
as we did for curves in Weierstrass form earlier in the course.

The cases involving inverses and the point at infinity are easy (we have P − P = 0 and
P + 0 = 0 + P = P), so let P1 = (x1, y1) and P2 = (x2, y2) be two (possibly equal but not
opposite) affine points on the curve whose sum P3 = (x3, y3) we wish to compute. We first
compute the slope m of the line P1P2.

m =


y1 − y2
x1 − x2

if P1 6= P2,

3x21 + 2Ax1 + 1

2By1
if P1 = P2.

(4)

Now we want to intersect the line y − y1 = m(x− x1) with the curve equation (3). Substi-
tuting m(x− x1) + y1 in for y, we get

B (m(x− x1) + y1)
2 = x3 +Ax2 + x. (5)

We know x1, x2, and x3 are the three roots of this cubic equation, since P1, P2, and −P3

all lie on the curve and the line P1P2. Thus the coefficient of x2 in (5) must be equal to
x1 + x2 + x3. We get a Bm2x2 term on the left side of (5) and an Ax2 term on the right,
so we have x1 + x2 + x3 = Bm2 − A. Solving for x3 and using the equation for P1P2 to
compute −y3, we obtain

x3 = Bm2 − (A+ x1 + x2) (6)

y3 = m(x1 − x3)− y1.

These formulas closely resemble the formulas for a curve in short Weierstrass form, but
with an extra B and A in the equation for x3. However, they have the key property that
they allow us to completely eliminate the y-coordinate from consideration. This is useful
because the y-coordinate is not needed in many applications; we not need to know the
y-coordinate of a point P in order to determine whether mP = 0 for a given integer m.
This makes the y-coordinate superfluous in applications such as ECM and ECPP.

Let us consider the doubling case first. Plugging in the expression for m given by (4) in
the case P1 = P2 = (x1, y1) into (6) and remembering the curve equation By2 = x3+Ax2+x,
we compute

x3 = B
(3x21 + 2Ax1 + 1)2

4B2y21
− (A+ 2x1)

=
(3x21 + 2Ax1 + 1)2 − 4(A+ 2x1)(x

3
1 +Ax21 + x1)

4(x31 +Ax21 + x1)

=
(x21 − 1)2

4x1(x21 +Ax1 + 1)
,

thus we can derive x3 from x1 without needing to know y1. Switching to projective coordi-
nates, we have

x3
z3

=

((
x1
z1

)2
− 1

)2

4x1
z1

((
x1
z1

)2
+Ax1

z1
+ 1

)
=

(x21 − z21)2

4x1z1(x21 +Ax1z1 + z21)

=
(x21 − z21)2

4x1z1
(
(x1 − z1)2 + (A+ 2)x1z1

) .
Thus we may write

x3 = (x1 + z1)
2(x1 − z1)2

4x1z1 = (x1 + z1)
2 − (x1 − z1)2 (7)

z3 = 4x1z1
(
(x1 − z1)2 + C(4x1z1)

)
.

where C = (A+ 2)/4. Notice that these formulas do not involve y1 and they only require 5
multiplications: 3 to compute x3, none to compute 4x1z1, and 2 more to compute z3. One
of these is a multiplication by the constant C, which may take negligible time if we can
arrange for C to be small.

Now let us do the same thing for addition:

x3 = B
(y1 − y2)2

(x1 − x2)2
− (A+ x1 + x2)

x3(x1 − x2)2 = B(y1 − y2)2 − (A+ x1 + x2)(x1 − x2)2

= By21 +By22 − 2By1y2 − (A+ x1 + x2)(x1 − x2)2

= −2By1y2 + 2x1x2(A+ x1 + x2) + x1 + x2

= −2By1Y2 + x2(x
2
1 +Ax1 + 1) + x1(x

2
2 +Ax2 + 1)

= −2By1y2 +
x2
x1
By21 +

x1
x2
By22

= B
(x2y1 − x1y2)2

x1x2
(8)

This gives us an equation for x3 in P3 = P1 + P2, but it still involves the y-coordinates of
P1 and P2. To address this, let us also compute the x-coordinate x4 of P4 = P1 − P2. The
hard work is already done, we just need to negate y2 in the equation for x3. Thus

x4(x1 − x2)2 = B
(x2y1 + x1y2)

2

x1x2
. (9)

Multiplying equations (8) and (9) yields

x3x4(x1 − x2)4 =
B2(x22y

2
1 − x21y22)2

x21x
2
2

=
(x22By

2
1 − x21By22)2

x21x
2
2)

=

(
x22(x

3
1 +Ax21 + x1)− x21(x32 +Ax22 + x2)

)2
x21x

2
2

=
(
x2(x

2
1 +Ax1 + 1)− x1(x22 +Ax2 + 1)

)2
= (x2x

2
1 − x1x22 + x2 − x1)2

= ((x1 − x2)(x1x2 − 1))2 .

Canceling a factor of (x1 − x2)2 from both sides gives

x3x4(x1 − x2)2 = (x1x2 − 1)2, (10)

which does not involve y1 or y2 (but does require us to know x4).
We now switch to projective coordinates:

x3
z3
· x4
z4

(
x1
z1
− x2
z2

)2

=

(
x1x2
z1z2

− 1

)2

x3
z3

=
z4
x4
· (x1x2 − z1z2)2

(x1z2 − x2z1)2
,

which yields

x3 = z4 [(x1 − z1)(x2 + z2) + (x1 + z1)(x2 − z2)]2 (11)

z3 = x4 [(x1 − z1)(x2 + z2)− (x1 + z1)(x2 − z2)]2

These formulas require just 6 multiplications, but they assume that we already know the
x-coordinate x4/z4 of P1−P2. This appears rather limiting, but if we structure the double-
and-add algorithm for scalar multiplication appropriately, we can use the formulas in (7)
and (11) to efficiently compute the x-coordinate of the scalar multiple mP using what is
known as a Montgomery ladder. In the algorithm below we assume points are represented
simply as projective pairs (x : z) that omit the y-coordinate.

Algorithm 12.5 (Montgomery Ladder).
Input: A point P = (x1 : z1) on a Montgomery curve and a positive integer m.
Output: The point mP = (xm : zm).

1. Let m =
∑k

i=0mi2
i be the binary representation of m.

2. Set Q[0] = P and compute Q[1] = 2P (note that P = Q[1]−Q[0]).

3. For i = k − 1 down to 0:

a. Q[1−mi]← Q[1] +Q[0] (Using P = Q[1]−Q[0])

b. Q[mi]← 2Q[0]

4. Return Q[0].

The Montgomery ladder is the usual double-and-add algorithm, augmented to ensure
that Q[1] − Q[0] = P is invariant throughout. A nice feature of the algorithm is that
every iteration of the loop is essentially the same: a Montgomery addition followed by a
Montgomery doubling. This makes the algorithm resistant to side-channel attacks based on
processor timing. If we assume that the input point P is in affine form (x1 : 1), then z1 =
z4 = 1 in the addition formulas in (11), which saves one multiplication. This yields a total
cost of

(
10 + o(1)

)
log2m field multiplications for Algorithm 12.5, or only

(
9 + o(1)

)
log2m

if the constant C is small enough to make the multiplications by C negligible.
An implementation of Algorithms 12.3 and 12.5 can be found in the sage worksheet

https://hensel.mit.edu:8002/home/pub/11/.

12.6 Torsion on a Montgomery Curve

Every Montgomery point has (0, 0) as a rational point of order 2 (as with curves in short
Weierstrass form, the points of order 2 are precisely those with y-coordinate 0). This tells
us that not every elliptic curve can be put in Montgomery form, since not every elliptic
curve has a rational point of order 2. In fact, more is true.

Theorem 12.6. The Montgomery curve E/k defined by By2 = x3 + Ax2 + x has either 3
rational points of order 2 or a rational point of order 4 (or both).

Proof. The cubic x3 + Ax2 + x has either one or three rational roots, and these roots are
distinct, since the curve is nonsingular. If it has three roots, then there are three rational
points of the form (x, 0), all of which have order 2.

If it has only one root, then x2 + Ax + 1 has no roots, so A2 − 4 = (A + 2)(A − 2) is
not a quadratic residue. Therefore one of A+ 2 and A− 2 is a quadratic residue (and the
other is not), so either A+2

B or A−2
B is a quadratic residue. We will use this fact to find a

point of order 4 that doubles to the 2-torsion point (0, 0), which is the unique point on the
curve whose x-coordinate is 0.

https://hensel.mit.edu:8002/home/pub/11/

To get x3 = 0 in the doubling formulas (7), we must have x1 = ±z1, equivalently,
x1/z1 = ±1. Plugging this into the curve equation, we seek a solution to either By2 = A+2
or By2 = A− 2. But we have already shown that either A+2

B or A−2
B is a quadratic residue,

so one of these equations has a solution and there is a rational point of order 4.

Thus, like Edwards curves, the torsion subgroup of a Montgomery curve always has
order divisible by 4. For the purposes of the ECM algorithm this is actually a feature,
since it slightly increases the likelihood that the group order will be smooth. In fact, most
implementations use specific parameterizations to generate curves E/Q that are guaranteed
to have even larger torsion subgroups, typically isomorphic to either Z/12Z or Z/2Z⊕Z/8Z;
see [1, 3, 5] for examples.

12.7 Second stage

Finally, we should mention that almost all practical implementations of ECM utilize some
form of second stage that is applied at the end of Algorithm 12.3. This topic is explored in
the problem set.

References

[1] A. O. L. Atkin and F. Morain, Finding suitable curves for the elliptic curve method of
factorization, Mathematics of Computation 60 (1992), 399–405.

[2] D. J. Bernstein, How to find smooth parts of integers, preprint http://cr.yp.to/
factorization/smoothparts-20040510.pdf, 2004.

[3] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters, ECM using Edwards curves,
Mathematics of Computation 82 (2013), 1139–1179.

[4] H. Lenstra, Factoring integers with elliptic curves, Annals of Mathematics 126 (1987),
649–673

[5] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation 48 (1987), 243–264.

[6] J. M. Pollard, Theorems of Factorization and Primality Testing, Proceedings of the
Cambridge Philosophical Society 76 (1974): 521–528

[7] P. Zimmermann and B. Dodson, 20 years of ECM, Algorithmic Number Theory 7th
International Symposium (ANTS VII), LNCS 4076 (2006), 525–542.

http://cr.yp.to/factorization/smoothparts-20040510.pdf
http://cr.yp.to/factorization/smoothparts-20040510.pdf

	 Pollard p-1 method
	The elliptic curve method for factoring integers (ECM)
	Efficient implementation
	Montgomery Curves
	Montgomery curve group law
	Torsion on a Montgomery Curve
	Second stage

