These problems are related to the material covered in Lectures $28-29$. I have made every effort to proof-read them, but some errors may remain. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due at $11: 59$ pm Eastern time on $04 / 27 / 2023$. It is to be submitted electronically as a pdf-file through gradescope. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions, and identify collaborators and any sources not listed in the syllabus.

Recall that we have defined a curve as a smooth projective variety of dimension one.

Problem 1. Weil reciprocity (50 points)

Let C / k be a curve over an algebraically closed field k. For $f \in k(C)^{\times}$and $D \in \operatorname{Div}_{k} C$ such that $\operatorname{div} f$ and D have disjoint support, define $f(D)$ as in part (d) of Problem 3 of pset8. Your goal in this problem is to prove the Weil reciprocity law, which states that for all $f, g \in k(C)^{\times}$such that $\operatorname{div} f$ and $\operatorname{div} g$ have disjoint support,

$$
f(\operatorname{div} g)=g(\operatorname{div} f)
$$

(a) Prove that for $C=\mathbb{P}^{1}$ we have

$$
\prod_{P}(-1)^{\operatorname{ord}_{P}(g) \operatorname{ord}_{P}(f)}\left(\frac{f^{\operatorname{ord}_{P}(g)}}{g^{\operatorname{ord}_{P}(f)}}\right)(P)=1,
$$

for all $f, g \in k(C)^{\times}$, whether or not $\operatorname{div} f$ and $\operatorname{div} g$ have disjoint support.
(b) Use (a) to prove the Weil reciprocity law in the case $C=\mathbb{P}^{1}$.

Associated to any morphism of curves $\phi: C_{1} \rightarrow C_{2}$ we have defined three maps

$$
\begin{array}{cl}
\phi^{*}: k\left(C_{2}\right) \rightarrow k\left(C_{1}\right) & \phi^{*}: \operatorname{Div}_{k} C_{2} \rightarrow \operatorname{Div}_{k} C_{1} \\
? & \phi_{*}: \operatorname{Div}_{k} C_{1} \rightarrow \operatorname{Div}_{k} C_{2}
\end{array}
$$

It is natural to ask whether there is a fourth map $\phi_{*}: k\left(C_{1}\right) \rightarrow k\left(C_{2}\right)$ that completes the table above, and indeed there is. It is defined by

$$
f \mapsto\left(\phi^{*}\right)^{-1} N(f),
$$

where $N: k\left(C_{1}\right) \rightarrow \phi^{*}\left(k\left(C_{2}\right)\right)$ is the norm map associated to the extension $k\left(C_{1}\right) / \phi^{*}\left(k\left(C_{2}\right)\right) .{ }^{1}$ It is obviously not a morphism of fields (unless ϕ is an isomorphism), but it is a morphism of their multiplicative groups.

We then have identities analogous to those proved in (c) and (d) of Problem 3 of pset8:

$$
\begin{equation*}
\phi_{*}(\operatorname{div} f)=\operatorname{div}\left(\phi_{*} f\right), \tag{1}
\end{equation*}
$$

[^0]for all $f \in k\left(C_{1}\right)^{\times}$, and
\[

$$
\begin{equation*}
f\left(\phi^{*} D\right)=\left(\phi_{*} f\right)(D), \tag{2}
\end{equation*}
$$

\]

for all $f \in k\left(C_{1}\right)^{\times}$and $D \in \operatorname{Div}_{k} C_{2}$ where both sides are defined.
We now turn to the general case of the Weil reciprocity law, where f and g are elements of $k(C)$ with disjoint support, where C is now any curve. Your objective is to prove Weil's reciprocity law in the general case using Weil reciprocity for \mathbb{P}^{1}, which you proved in (b).

As noted in lecture, any function in $k(C)$ defines a morphism to \mathbb{P}^{1}, so we may view both f and g as morphisms, and we then have associated pullback maps f^{*}, g^{*} and pushforward maps f_{*}, g_{*} that can be applied both to the divisor groups and function fields of C and \mathbb{P}^{1}. We also need the identity morphism $i: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.
(c) Prove that $\operatorname{div} g=g^{*} \operatorname{div} i$ for any $g \in k(C)^{\times}$.
(d) Use (b) and (c), parts (c) and (d) of Problem 3 of pset8, and identities (1) and (2) to prove the Weil reciprocity law in the general case.

Problem 2. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found the problem $(1=$ "trivial," $10=$ "brutal" $)$. Also estimate the amount of time you spent on each problem.

	Interest	Difficulty	Time Spent
Problem 1			

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.

[^0]: ${ }^{1}$ Recall from Definition 7.1 that the norm map of a finite extension L / K sends an element of L with characteristic polynomial $F \in K[x]$ to $(-1)^{[L: K]} F(0)$ which is an element of K.

