These problems are related to the material covered in Lectures 16-18. I have made every effort to proof-read them, but some errors may remain. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due at 11:59pm Eastern time on 03/23/2023. It is to be submitted electronically as a pdf-file through gradescope. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions, and identify collaborators and any sources not listed in the syllabus.

Problem 1. Homogeneous ideals and projective algebraic sets (50 points)

Let k be a perfect field and fix an algebraic closure \overline{k} . Fix a positive integer n, let R be the polynomial ring $\overline{k}[x_0, \ldots, x_n]$, and let \mathbb{R}^h be the set of all homogeneous polynomials in R. Recall from class that (1) a homogenous ideal in R is an ideal generated by elements of \mathbb{R}^h , (2) for any subset $S \subset \mathbb{R}$ the algebraic set Z_S is the zero locus in \mathbb{P}^n of $S \cap \mathbb{R}^h$, and (3) for any subset $Z \subset \mathbb{P}^n$ the ideal I(Z) is the homogeneous ideal generated by the polynomials in \mathbb{R}^h that vanish at every point in Z.

- (a) Prove the "homogeneous Nullstellensatz," which says that if I ⊆ R is a homogeneous ideal and f ∈ R^h is a nonconstant polynomial that vanishes at every point in Z_I, then f^r ∈ I for some r > 0.
 (Hint: Re-interpret the problem in Aⁿ⁺¹ and use the usual Nullstellensatz).
- (b) Let R_+ denote the set of all polynomials in R with no constant term. Prove that for any homogeneous ideal $I \subseteq R$ the following are equivalent:
 - (i) Z_I is the empty set;
 - (ii) Either $\sqrt{I} = R$ or $\sqrt{I} = R_+$.
 - (iii) I contains every polynomial in \mathbb{R}^h of degree d, for some d > 0.
- (c) Prove the following:
 - (i) If $S \subseteq T$ are subsets of \mathbb{R}^h then $Z_T \subseteq Z_S$.
 - (ii) If $Y \subseteq Z$ are subsets of \mathbb{P}^n then $I(Z) \subseteq I(Y)$.
 - (iii) For any two subsets Y, Z in \mathbb{P}^n we have $I(Y \cup Z) = I(Y) \cap I(Z)$.
 - (iv) For any algebraic set $Z \subseteq \mathbb{P}^n$ we have $Z_{I(Z)} = Z$.
 - (v) For any homogeneous radical ideal I for which $Z_I \neq \emptyset$ we have $I(Z_I) = I$.
- (d) Conclude from (a), (b), and (c) that there is a one-to-one inclusion-reversing correspondence between algebraic sets in \mathbb{P}^n and homogeneous radical ideals in R that are not equal to R_+ , given by the maps $Z \to I(Z)$ and $I \to Z_I$.¹
- (e) Prove that an algebraic set $Z \in \mathbb{P}^n$ is irreducible if and only if I(Z) is a prime ideal.

¹The ideal $\overline{R_+}$ that does not appear in this correspondence is called the *irrelevant* ideal.

Problem 2. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem $(1 = \text{``mind-numbing,''} \ 10 = \text{``mind-blowing''})$, and how difficult you found the problem $(1 = \text{``trivial,''} \ 10 = \text{``brutal''})$. Also estimate the amount of time you spent on each problem.

	Interest	Difficulty	Time Spent
Problem 1			

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.