
18.782 Introduction to Arithmetic Geometry
Spring 2023

Problem Set #3 Due: 03/04/2023

These problems are related to the material covered in Lectures 7-9. I have made ev-
ery effort to proof-read them, but there are may still be errors that I have missed. The
first person to spot each error will receive 1-5 points of extra credit on their problem set,
depending on the severity of the error.

The problem set is due at 11:59pm Eastern time on 03/04/2023. (Note the later date
than usual). It is to be submitted electronically as a pdf-file through gradescope. You
can use the latex source for this problem set as a template for writing up your solutions; be
sure to include your name in your solutions, and remember to identify any collaborators or
sources that you consulted that are not listed in the syllabus.

Problem 1. Non-archimedean topology. (35 points)

Let k be a field with a non-archimedean absolute value ∥·∥. The metric d(x, y) = ∥x− y∥
makes k a metric space whose topology is defined by the basis of open sets consisting of all
open balls B(x, r) = {y : d(x, y) < r} with x ∈ k and r ∈ R>0.

Non-archimedean topology can be very counterintuitive, so be sure to keep in mind the
following definitions, which apply to any topological space.

1. The collection of open sets is closed under arbitrary unions (including infinite unions)
and finite intersections, and always includes the empty set and the whole space.

2. A set is closed if and only if its complement is open.

3. The interior of a set S is the union of all the open sets S contains, and the closure of
S is the intersection of all the closed sets that contain S.

(a) Prove that every triangle in k is either equilateral, or acute isosceles. More precisely,
for any x, y, z ∈ k prove that the three distances d(x, y), d(y, z), d(z, x) are either all
equal, or two of them are equal and the third is smaller.

(b) Prove that every point in an open ball B(x, r) is “at the center” by showing that
y ∈ B(x, r) implies B(x, r) = B(y, r). Conclude that two balls are either disjoint or
concentric (this means they have a common center).

(c) Prove that every open ball is closed (and therefore equal to its closure).

(d) Consider a closed ball C(x, r) = {y : d(x, y) ≤ r}. Prove that every point in C(x, r) is
at the center, and that every closed ball is open (and therefore equal to its interior).

(e) Consider a sphere S(x, r) = {y : d(x, y) = r}. Prove that every sphere is both open
and closed.
(Hint: Use part (a).)

(f) Prove that k is totally disconnected. This means that for all distinct x, y ∈ k there
are disjoint open sets X and Y containing x and y respectively, such that k = X

⋃
Y .

(g) For k = Qp with the p-adic absolute value, prove that the closure of the open B(x, r)
is not necessarily the closed ball C(x, r), but sometimes is (give examples of both).
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Problem 2. Equivalent absolute values. (10 points)

If | | is a non-archimedean absolute value on a field k, then | |α is also an absolute value on
k for any α > 0. Let us consider what happens in the archimedean case.

(a) Up to equivalence the only absolute value on R is the standard absolute value:

|x| =

{
x, if x ≥ 0

−x, if x < 0

Describe all absolute values on R that are equivalent to the standard absolute value.
(Hint: Calculus is your friend.)

(b) Up to equivalence the only absolute value on C is the standard absolute value:

|x+ iy| =
√
x2 + y2

Describe all absolute values on C that are equivalent to the standard absolute value.
(Hint: Use part (a).)

Problem 3. n-adic rings (25 points)

For any integer n > 1 define the n-adic valuation vn(x) of nonzero x ∈ Q to be the unique
integer k for which x = a

bn
k, with n ∤ a, gcd(a, b) = 1 and gcd(b, n) = 1, and let vn(0) =∞.

Now define the function | |n : Q→ R≥0 by

|x|n = n−vn(x),

where |0|n = n−∞ is understood to be 0.

(a) Prove that | |n is an absolute value if and only if n is prime, but that | |n always
satisfies the non-archimedean triangle inequality |x+ y|n ≤ max(|x|n, |y|n).

Let Ak = Z/nkZ and consider the inverse system of rings (Ak) with morphisms Ak+1 → Ak

given by reduction modulo nk. Define the ring of n-adic integers as the inverse limit
Zn = lim←−Ak (this generalizes our definition of Zp).

(b) Prove that if n is not a prime power then Zn is not an integral domain.

In view of (b), we cannot define Qn as the fraction field of Zn in general. But we can define
Qn as the completion of Q with respect to | |n, in the same way that Qp is constructed as
the p-adic completion of Q.

(c) Formalize this definition of Qn and show that it is a ring. Make it clear what the
elements of Qn are, define the ring operations, and extend the definition of | |n to Qn.

(d) Prove that for all prime powers pe we have Qpe = Qp.

(e) Let n = pq for two distinct prime numbers p, q. Then prove that Qn is isomorphic to
the direct product of rings Qp ⊕Qq.



Problem 4. Quadratic extensions of Qp (30 points)

Let p be a prime congruent to 3 mod 4.

(a) Prove that −1 does not have a square-root in Qp and that the ideal p = (p) is prime
in Z[i], the ring of integers of Q(i).

(b) Consider the quadratic extension Qp(i) = Qp[x]/(x
2 + 1) and extend the p-adic abso-

lute value | |p from Qp to Qp(i) by defining for each α = a+ bi ∈ Qp(i):

|α|p = |NQp(i)/Qp
(α)|1/[Qp(i):Qp]

p =
√
|a2 + b2|p.

Prove that | |p is an absolute value on Qp(i), and that Qp(i) is complete with respect
to this absolute value.

(c) For α ∈ Q(i) define
|α|p = NQ(i)/Q(p)

−vp(α) = p−2vp(α),

where vp(α) is the p-adic valuation of α. Recall that the p-adic valuation of β ∈ Z[i]
is the exponent of p in the prime factorization of the Z[i]-ideal (β), and this extends
to Q(i) via vp(β/γ) = vp(β) − vp(γ) (note that Q(i) is the fraction field of its ring
of integers Z[i]). Let Q(i)p denote the completion of Q(i) with respect to | |p. Prove
that Qp(i) and Q(i)p are isomorphic fields with equivalent (but not equal) absolute
values.

(d) Prove that p does not have a square root in Qp(i), thus the quadratic extensions
Qp(
√
p) and Qp(i) are distinct. Conclude that Qp(

√
−p) is also a quadratic extension

of Qp, and it is distinct from both Qp(i) and Qp(
√
p).

We will see that up to isomorphism, Qp(i), Qp(
√
p) and Qp(

√
−p) are the only quadratic

extensions of Qp, and that a similar statement holds for primes that are congruent to
1 mod 4. This is in contrast to Q, which has infinitely many non-isomorphic quadratic
extensions, and to Q∞ = R, which has only one.

(e) Recall that every field K with a nonarchimedean absolute value has an associated
residue field, defined by OK/mK , where

OK = {x ∈ K : |x| ≤ 1}
mK = {x ∈ K : |x| < 1}.

Compute the residue fields of Qp(i) and Qp(
√
p).

Problem 5. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how
interesting you found the problem (1 = “mind-numbing,” 10 = “mind-blowing”), and how
difficult you found the problem (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4



Feel free to record any additional comments you have on the problem sets or lectures; in
particular, how you think they might be improved.


