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As usual, all the rings we consider are commutative rings with an identity element.

18.1 Regular local rings

Consider a local ring R with unique maximal ideal m. The ideal m is, in particular, an
abelian group, and it contains m2 as a normal subgroup, so we can consider the quotient
group m/m2, where the group operation is addition of cosets:

(m1 + m2) + (m2 + m2) = (m1 +m2) + m2.

But m is also an ideal, so it is closed under multiplication by R, and it is a maximal ideal,
so R/m is a field (the residue field). The quotient group m/m2 has a natural structure as
an (R/m)-vector space. Scalars are cosets r+m in the field R/m, and scalar multiplication
is defined by

(r + m)(m+ m2) = rm+ m2.

In practice one often doesn’t write out the cosets explicitly (especially for elements of the
residue field), but it is important to keep the underlying definitions in mind; they are a
valuable compass if you ever start to feel lost.

The motivation for this discussion is the case where R is the local ring OP of regular
functions at a point P on a variety V . In this setting m/m2 is precisely the vector space
mP /m

2
P that is isomorphic to the T∨P , the dual of the tangent space at P ; recall from the

previous lecture that P is a smooth point of V if and only if dimmP /m
2
P = dimV . We

now give an algebraic characterization of this situation that does not involve varieties. We
write dimm/m2 to indicate the dimension of m/m2 as an (R/m)-vector space, and we write
dimR to denote the (Krull) dimension of the ring R.

Definition 18.1. A Noetherian local ring R with maximal ideal m is a regular local ring if
dimm/m2 = dimR (note that Noetherian is included in the definition of regular).1

We are particularly interested in regular local rings of dimension 1, these correspond to
rings OP of regular functions at a smooth point P on a curve (a variety of dimension one).

Theorem 18.2. A ring R is a regular local ring of dimension one if and only if it is a
discrete valuation ring.

Proof. We prove the easier direction first. Let R be a discrete valuation ring (DVR) with
maximal ideal m = (t). Then R is a local ring, and it is certainly Noetherian, since it is a
principal ideal domain (PID). Its prime ideals are (0) and (t), so it has dimension 1, and
t+ m2 generates m/m2, so dimm/m2 = 1. Thus R is a regular local ring of dimension 1.

Let R be a regular local ring of dimension one. Its unique maximal ideal m is not equal
to m2, since dimm/m2 = 1 > 0; in particular, m 6= (0) and R is not a field. Let t ∈ m−m2.
Then t+m2 generates m/m2, since dimm/m2 = 1. By Corollary 18.4 of Nakayama’s lemma
(proved below), t generates m. So every x ∈ R − (0) has the form x = utn, with u ∈ R×
and n ∈ Z≥0 (since R is a local ring with m = (t)), and every nonzero ideal is principal,
of the form (tn). It follows that the prime ideals in R are exactly (0) and (t), since R has
dimension one. So R = R/(0) is an integral domain, and therefore a PID, hence a DVR.

1More generally, a Noetherian ring is regular if all of its localizations at prime ideals are regular.



To prove Corollary 18.4 used in the proof above we require a special case of what is
known as Nakayama’s lemma. The statement of the lemma may seem a bit strange at first,
but it is surprisingly useful and has many applications.

Lemma 18.3 (Nakayama). Let R be a local ring with maximal ideal m and suppose that M
is a finitely generated R-module with the property M = mM . Then M is the zero module.

Proof. Let b1, . . . , bn be generators for M . By hypothesis, every bi can be written in the
form bi =

∑
j aijbj with aij ∈ m. In matrix form we have B = AB, where B = (b1, . . . , bn)t

is a column vector and A = (aij) is an n × n matrix with entries in m. Equivalently,
(I − A)B = 0, where I is the n × n identity matrix. The diagonal entries 1 − aii of I − A
are units, because 1 − aii cannot lie in m (otherwise 1 ∈ m, which is not the case), and
every element of R−m is a unit (since R is a local ring). However the off-diagonal entries
of I −A all lie in m. Expressing the determinant d of I −A as a sum over permutations, it
is clear that d = 1 + a for some a ∈ m, hence d is a unit and I − A is invertible. But then
(I −A)−1(I −A)B = B = 0, which means that M is the zero module.

Corollary 18.4. Let R be a local Noetherian ring with maximal ideal m. Then t1, . . . , tn ∈ m
generate m if and only if their images generate m/m2 as an R/m vector space.

Proof. The “only if” direction is clear. Let N be the ideal (t1, . . . , tn) ⊆ m. If the images
of t1, . . . , tn in m/m2 generate m/m2 as an R/m-vector space, then we have

N + m2 = m + m2

(N + m2)/N = (m + m2)/N

m(m/N) = m/N,

where we have used N/N = 0 and m + m2 = m (since m2 ⊆ m). By Nakayama’s lemma,
M = m/N is the zero module, so m = N and t1, . . . , tn generate m.

18.2 Smooth projective curves

It follows from Theorem 18.2 that for a smooth curve C the local rings OP = k[C]mP are
all discrete valuation rings of k(C)/k. If C is a projective curve, then by Theorem 16.33
it is complete, and from the proof of Theorem 16.33 we know that it satisfies Chevalley’s
criterion: every valuation ring R of k(C)/k contains a local ring OP . The fact that OP
is a discrete valuation ring actually forces R = OP ; this is a consequence of the following
theorem.

Theorem 18.5. Let R1 and R2 be valuation rings with the same fraction field, let m1

and m2 be their respective maximal ideals, and suppose R1 ( R2. Then m2 ( m1 and
dimR2 < dimR1. In particular, R1 cannot be a discrete valuation ring.

Proof. Let x ∈ R2 − R1. Then 1/x ∈ R1 ⊆ R2, so x is in R×2 and therefore not in m2. We
also have 1/x 6∈ R×1 , so 1/x lies in m1 but not in m2. Therefore m2 ( m1. Every prime ideal
of R2 is contained in m2, hence in m1, and if p is prime in R2 then it is clearly prime in R1: if
ab ∈ p for some a, b ∈ R1 ⊆ R2 then one of a, b lies in p. Thus every chain of prime ideals in
R2 is also a chain of prime ideals in R1, and in R1 any such chain can be extended by adding
the prime ideal m1. Thus dimR2 < dimR1. If R1 is a DVR then dimR2 < dimR1 = 1,
but dimR2 ≥ 1, since R2 is a valuation ring (not a field), therefore R1 is not a DVR.



Thus we have a one-to-one correspondence between the points on a smooth projective
curve C and the discrete valuation rings of k(C)/k.

Theorem 18.6. Let C be a smooth projective curve. Every rational map φ : C → V from
C to a projective variety V is a morphism.

Proof. Let φ = (φ0 : · · · : φn) and consider any point P ∈ C. Let us pick a uniformizer t
for the discrete valuation ring OP (a generator for the maximal ideal mP ), and let

n = min{ordP (φ1), . . . , ordP (φn)},

where ordP : k(C) → k(C)×/O×P ' Z is the discrete valuation of OP . If n = 0 then φ is
regular at P , since then all the φi are defined at P and at least one is a unit in O×P , hence
nonzero at P . But in any case we have

ordP (t−nφi) = ordP (φi)− n ≥ 0

for i = 0, . . . , n, with equality for at least one value of i. It follows that(
t−nφ0 : · · · : t−nφn

)
= (φ0 : · · · : φn)

is regular at P . This holds for every P ∈ C, so φ is a regular rational map, hence a
morphism.

Corollary 18.7. Every rational map φ : C1 → C2 between smooth projective curves is either
constant or surjective.

Proof. Projective varieties are complete, so im(φ) is a subvariety of C2, and since dimC2 = 1
this is either a point (in which case φ is constant) or all of C2.

Corollary 18.8. Every birational map between smooth projective curves is an isomorphism.

It follows from Corollary 18.8 that if a curve C1 is birationally equivalent to any smooth
projective curve C2, then all such C2 are isomorphic. We want to show that such a C2

always exists. Recall that birationally equivalent curves have isomorphic function fields.
Thus it suffices to show that every function field of dimension one actually arises as the
function field of a smooth projective curve.

18.3 Function fields as abstract curves

Let F/k be a function field of dimension one, where k is an algebraically closed field. We
know that if F is the function field of a smooth projective curve C, then there is a one-to-one
correspondence between the points of C and the discrete valuation rings of F . Our strategy
is to define an abstract curve CF whose “points” correspond to the discrete valuation rings
of F , and then show that it is actually isomorphic to a smooth projective curve.

So let X = XF be the set of all maximal ideals P of discrete valuation rings of F/k.
The elements of P ∈ XF are called points (or places). Let OP,X = OP denote the valuation
ring with maximal ideal P , and let ordP denote its associated valuation. For any U ⊂ X
the ring of regular functions on U is the ring

OX(U) = O(U) := ∩P∈UOP = {f ∈ F : ordP (f) ≥ 0 for all P ∈ U} ⊆ F,



and we call O(X) the ring of regular functions (or coordinate ring) of X. Note that O(X)
is precisely the intersection of all the valuation rings of F/k.

For f ∈ OP we define f(P ) to be the image of f in the residue field OP /P ' k; thus

f(P ) = 0⇐⇒ f ∈ P ⇐⇒ ordP (f) > 0.

For f ∈ OX we have f(P ) = 0 if and only if ordP (f) > 0. We then give X the Zariski
topology by taking as closed sets the zero locus of any subset of O(X).2 If F is actually the
function field of a smooth projective curve, all the definitions above agree with our usual
notation, as we will verify shortly.

Definition 18.9. An abstract curve is the topological space X = XF with rings of regular
functions OX,U determined by the function field F/k as above. A morphism φ : X → Y
between abstract curves or projective varieties is a continuous map such that for every open
U ⊆ Y and f ∈ OY (U) we have f ◦ φ ∈ OX(φ−1(U)).

As you will verify in the homework, if X and Y are both projective varieties this defini-
tion of a morphism is equivalent to our earlier definition of a morphism between projective
varieties. The identity map X → X is obviously a morphism, and we can compose mor-
phisms: if φ : X → Y and ϕ : Y → Z are morphisms, then ϕ ◦ φ is continuous, and for any
open U ⊆ Z and f ∈ OZ(U) we have f ◦ ϕ ∈ OY (ϕ−1(U)), and then

f ◦ (ϕ ◦ φ) = (f ◦ ϕ) ◦ φ ∈ OX(φ−1(ϕ−1(U))) = OX((ϕ ◦ φ)−1(U)).

Thus we have a category whose objects include both abstract curves and projective varieties.
Let us verify that we have set things up correctly by proving that every smooth projective

curve is isomorphic to the abstract curve determined by its function field. This follows
immediately from our definitions, but it is worth unravelling them once just to be sure.

Theorem 18.10. Let C be a smooth projective curve and let X = Xk(C) be the abstract
curve associated to its function field. Then C and X are isomorphic.

Proof. For the sake of clarity, let us identify the points (discrete valuation rings) of X as
maximal ideals mP corresponding to points P ∈ C. As noted above there is a one-to-one
correspondence between P ∈ C and mP ∈ X, we just need to show that this induces an
isomorphism of curves. So let φ : C → X be the bijection that sends P to mP .

For any U ⊆ C we have, by definition, OC(U) = ∩P∈UOP,C andOX(V ) = ∩mP∈VOmP ,X ,
so OC(U) = OX(φ(U)) In particular,

O(C) = O(φ(C)) = O(X),

hence the rings of regular functions of C and X are actually identical (not just in bijection).
Moreover, for any open U ⊆ X and f ∈ OX(U) we have f ◦ φ = f ∈ OC(φ−1(U)), and for
any open U ⊆ C and f ∈ OC,U we have f ◦ φ−1 = f ∈ OX(φ(U)).

A set U ⊆ C is closed if and only if it is the zero locus of some subset of O(C), and for
any P ∈ C, equivalently, any φ(P ) ∈ X, we have

f(P ) = 0⇐⇒ ordP (f) > 0⇐⇒ f(φ(P )) = 0,

where we are using the definition of f(φ(P )) = f(mP ) for mP ∈ X on the right. It follows
that φ is a topology isomorphism from C to X; in particular, both φ and φ−1 are continuous.
Thus φ and φ−1 are both morphisms, and φ ◦ φ−1 and φ−1 ◦ φ are the identity maps.

2As we will prove in this next lecture, this is just the cofinite topology: the open sets are the empty set
and complements of finite sets.



One last ingredient before our main result; we want to be able to construct smooth
affine curves with a specified function field that contain a point whose local ring is equal to
a specific discrete valuation ring.

Lemma 18.11. Let R be a discrete valuation ring of a function field F/k of dimension one.
There exists a smooth affine curve C with k(C) = F such that R = OP for some P ∈ C.

Proof. The extension F/k is finitely generated, so let α1, . . . , αn be generators, and replace
αi with 1/αi as required so that α1, . . . , αn ∈ R. Let S be the intersection of all discrete
valuation rings of F/k that contain the subalgebra k[α1, . . . , αn] ⊆ F . Then S ⊆ R is an
integral domain with fraction field F . The kernel of the map from the polynomial ring
k[x1, . . . , xn] to S that sends each xi to αi is a prime ideal I for which S = k[x1, . . . , xn]/I.
The variety C ⊆ An defined by I has coordinate ring k[C] = S ⊆ R and function field
k(C) = F , so it has dimension one and is a curve

Moreover, the curve C is smooth; its coordinate ring S is integrally closed (it is an inter-
section of discrete valuation rings, each of which is integrally closed), and by Lemma 18.12
below, all its local rings OP are discrete valuation rings, hence regular, and therefore every
point P ∈ C is smooth.

Let φ : R→ R/m = k be the quotient map and consider the point P (φ(x1), . . . , φ(xn)).
Every f in the maximal ideal mP of OP satisfies

φ(f) = φ(f(x1, . . . , xn)) = f(φ(x1), . . . , φ(xn)) = f(P ) = 0

and therefore lies in m. By Theorem 18.5, R = OP as desired.

The following lemma is a standard result of commutative algebra (so feel free to skip the
proof on a first reading), but it is an essential result that has a reasonably straight-forward
proof (using Theorem 18.2), so we include it here.3

Lemma 18.12. If A is an integrally closed Noetherian domain of dimension one then all
of its localizations at nonzero prime ideals are discrete valuation rings.4

Proof. Let F be the fraction field of A and let p be a nonzero prime ideal. We first note
that Ap is integrally closed. Indeed, if xn + an−1x

n−1 + · · · + a0 = 0 is an equation with
ai ∈ Ap and x ∈ F , then we may pick s ∈ A − p so that all the sai lie in A (let s be the
product of all the denominators ci 6∈ p of ai = bi/ci). Multiplying through by sn yields an
equation (sx)n + san−1(sx)n−1 + · · ·+ sna0 = 0 in y = sx with coefficients in A. Since A is
integrally closed, y ∈ A, therefore x = y/s ∈ Ap as desired.

Let m = pAp be the maximal ideal of Ap. The ring Ap has dimension one, since (0) ( m
are all the prime ideals in Ap (otherwise we would have a nonzero prime q properly contained
in m, but then q ∩ A would be a nonzero prime properly contained in p, contradicting
dimA = 1). Thus R = Ap is a local ring of dimension one. By Theorem 18.2, to show
that R is a DVR it suffices to prove that R is regular; it is clear that R is Noetherian
(since A is), we just need to show dimm/m2 = dimR = 1. By Nakayama’s lemma, m2 6= m,
so dimm/m2 6= 0. To show dimm/m2 = 1 it suffices to prove that m is principal. To do this
we adapt an argument of Serre from [1, §I.1].

3There are plenty of shorter proofs, but they tend to use facts that we have not proved.
4Such rings are called Dedekind domains. They play an important role in number theory where they

appear as the ring of integers of a number field. The key property of a Dedekind domain is that ideals can
be uniquely factored into prime ideals, although we don’t use this here.



Let S = {y ∈ F : ym ⊆ R}, and let mS denote the R-ideal generated by all products xy
with x ∈ m and y ∈ S (just like an ideal product). Then m ⊆ mS ⊆ R, so either mS = m
or mS = R. We claim that the latter holds. Assuming it does, then 1 =

∑
xiyi for some

xi ∈ m and yi ∈ S. The products xiyi all lie in R but not all can lie in m, so some xjyj is
invertible. Set x = xj/(xjyj) and y = yj so that xy = 1, with x ∈ m and y ∈ S. We can
then write any z ∈ m as z = 1 · z = xy · z = x · yz. But yz ∈ R, since y ∈ S, so every z ∈ m
actually lies in (x). Thus m = (x) is principal as desired, assuming mS = R.

We now prove that mS = R by supposing the contrary and deriving a contradiction. We
will do this by proving that mS = m implies both S ⊆ R and S 6⊆ R. So assume mS = m.

We first prove S ⊆ R. Since mS = m, for any λ ∈ S we have λm ⊆ m. The ring R is
Noetherian, so let m1, . . . ,mk be generators for m. We then have k equations of the form∑

i,j aijmj = λmi with aij ∈ R. Thus λ is an eigenvalue of the matrix (aij) and therefore
a root of its characteristic polynomial, which is monic, with coefficients in R. Since R is
integrally closed, λ ∈ R, and therefore S ⊆ R as claimed.

We now prove S 6⊆ R, thereby obtaining a contradiction. Let x ∈ m−{0}, and consider
the ring Tx = {y/xn : y ∈ R,n ≥ 0}. We claim Tx = F : if not, it contains a nonzero
maximal ideal q with x 6∈ q (since x is a unit in Tx), so q ∩R 6= m, and clearly q ∩R 6= (0),
but then q∩R is a prime ideal of R strictly between (0) and m, which contradicts dimR = 1.
So every element of Tx = F can be written in the form y/xn, and this holds for any x ∈ m.
Applying this to a fixed 1/z with z ∈ m − {0}, we see that every x ∈ m − {0} satisfies
xn = yz for some y ∈ R and n ≥ 0, thus xn ∈ (z) for all x ∈ m and sufficiently large n.
Applying this to our generators m1, . . . ,mk for m, choose n so that mn

1 , . . . ,m
n
k ∈ (z), and

then let N = kn so that (
∑

i rimi)
N ∈ (z) for all choices of ri ∈ R. Thus mn ⊆ (z) for all

n ≥ N , and there is some minimal n ≥ 1 for which mn ⊆ (z). If n = 1 then m = (z) is
principal and we are done. Otherwise, choose y ∈ mn−1 so thaty 6∈ (z) but ym ⊆ (z). Then
(y/z)m ∈ R, so y/z ∈ S, but y/z 6∈ R (since z ∈ m), so S 6⊆ R as claimed.

We are now ready to prove our main theorem.

Theorem 18.13. Every abstract curve is isomorphic to a smooth projective curve.

Proof. Let X = XF be the abstract curve associated to the function field F/k. Then O(X)
is an affine algebra, and there is a corresponding affine curve A. The curve A is smooth,
since all its local rings OP are discrete valuation rings, but it is not complete, so not every
point on X (each corresponding to a discrete valuation rings of F/k) corresponds to a point
on A. So let C be the projective closure of A; the curve C need not be smooth, but it is
complete, and it satisfies Chevalley’s criterion. Thus for each point P ∈ X, the associated
discrete valuation ring OP,X contains the local ring OQ,C of a point Q ∈ C1. The point Q
is certainly unique; if OP,X contained two distinct local rings it would contain the entire
function field, which is not the case (to see this, note that for any distinct P,Q ∈ C the
zero locus of mP +mQ is empty).

So let φ : X → C map each P ∈ X to the unique Q ∈ C1 for which OQ,C ⊆ OP,X .
It is easy to see that φ is continuous; indeed, since we are in dimension one it suffices to
note that it is surjective, and this is so: every local ring OQ,C is contained in a discrete
valuation ring OP,X (possibly more than one, this can happen if Q is singular).5 To check
that it is a morphism, if U ⊆ C is open and f ∈ OC(U) = ∩Q∈UOQ,C then we have
OX(φ−1(U)) = ∩φ(P )∈UOP,X ⊇ ∩Q∈UOQ,C and therefore f ◦ φ ∈ OX(V ) as required.

5This follows from Problem 2 part 5 on Problem Set 8.



Now let C1 = C and φ1 = φ. There are finitely many singular points Q ∈ C (the
singular locus has dimension 0), and for each such Q the inverse image φ−1(Q) ⊆ X is
closed and not equal to X (since φ is surjective and C has more than one point), so finite.
Let P2, . . . , Pn ∈ X be the finite list of points whose images under φ1 are singular in C.

For each Pi we now let Ci be the projective closure of the smooth affine curve with
function field F/k and a local ring OP,Ci equal to OPi,X , given by Lemma 18.11. Then
k(Ci) = F and the point on Ci corresponding to Pi is smooth by construction, since its local
ring is precisely the discrete valuation ring OPi . Define a surjective morphism φi : X → Ci
exactly as we did for φ1.

We now consider the product variety Y =
∏
iCi and define the morphism ϕ : X → Y by

ϕ(P ) = (φ1(P ), . . . , φn(P )). The variety Y is a product of projective varieties and can be
smoothly embedded in a single projective space.6 The image of ϕ in Y is a projective curve
C whose function field is isomorphic to F , and C is smooth because, by construction, every
point P ∈ C is smooth in one of its affine parts. By Theorem 18.10, the smooth projective
curve C is isomorphic to the abstract curve associated to its function field, namely, X.

Corollary 18.14. Every curve C is birationally equivalent to a smooth projective curve
that is unique up to isomorphism.

Proof. By 18.10 there exists an abstract curve corresponding to the function field k(C),
and by Theorem 18.13 this abstract curve is isomorphic to a smooth projective curve.
Uniqueness follows from Corollary 18.8.

The smooth projective curve to which a given curve C is birationally equivalent is called
the desingularization C. Henceforth, whenever we write down an equation for a curve (which
may be affine and/or have singularities) we can always assume that we are referring to its
desingularization.

Remark 18.15. In the proof of Theorem 18.13 we made no attempt to control the di-
mension of the projective space into which we embedded the smooth projective curve C
isomorphic to our abstract curve X. Using more concrete methods, one can show that it is
always possible to embed C in P3. In general, one can do no better than this; indeed we
will see plenty of examples of smooth projective curves that cannot be embedded in P2.
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