These problems are related to the material covered in Lectures 8-9. I have made every effort to proof-read them, but there are may be errors that I have missed. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by the start of class on 10/08/2013 and should be submitted electronically as a pdf-file e-mailed to drew@math.mit.edu. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and remember to identify all collaborators and any sources that you consulted that are not listed in the syllabus.

Problem 1. A stronger form of Hensel's lemma. (30 points)

(a) Let $f \in \mathbb{Z}_{p}[x]$ and suppose $|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}$ for some $a \in \mathbb{Z}_{p}$. Let $a_{1}=a$, and for $n \geq 1$ let

$$
a_{n+1}=a_{n}-f\left(a_{n}\right) / f^{\prime}\left(a_{n}\right) .
$$

Prove that this defines a Cauchy sequence $\left(a_{n}\right)$ in \mathbb{Z}_{p} whose limit b uniquely satisfies $f(b)=0$ and $|a-b|_{p}<\left|f^{\prime}(a)\right|_{p}$, and moreover, $\left|f^{\prime}(a)\right|_{p}=\left|f^{\prime}(b)\right|_{p}$. (you may find it helpful to reword this in terms of v_{p} and work with congruences modulo powers of p).
(b) Prove that the hypothesis in (a) is necessary in the following sense. Suppose that b is a simple root of a polynomial $f \in \mathbb{Z}_{p}[x]$. Prove that for any $a \in \mathbb{Z}_{p}$, if $|a-b|_{p}<\left|f^{\prime}(b)\right|_{p}$ then $|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}$. Conclude that if no $a \in \mathbb{Z}_{p}$ satisfies the hypothesis of (a), then $f(x)$ does not have a simple root in \mathbb{Z}_{p}.
(c) Use (a) to compute a square root of 57 in \mathbb{Z}_{2} to 16 digits of 2-adic precision using $a=1$. How many a_{n} do you need to compute to achieve this precision?

Problem 2. A faster form of Hensel's lemma. (20 points)

(a) Let R be a commutative ring, let $f \in R[x]$, and let $m \in R$. Suppose that $x_{0}, z_{0} \in R$ satisfy $f\left(x_{0}\right) \equiv 0 \bmod m$ and $f^{\prime}\left(x_{0}\right) z_{0} \equiv 1 \bmod m($ note that $a \equiv b \bmod m$ simply means that $a-b$ is an element of the R-ideal (m)). Let

$$
\begin{aligned}
& x_{1}=x_{0}-f\left(x_{0}\right) z_{0}, \\
& z_{1}=2 z_{0}-f^{\prime}\left(x_{1}\right) z_{0}^{2} .
\end{aligned}
$$

Prove that
(i) $x_{1} \equiv x_{0} \bmod m$,
(ii) $f\left(x_{1}\right) \equiv 0 \bmod m^{2}$,
(iii) $f^{\prime}\left(x_{1}\right) z_{1} \equiv 1 \bmod m^{2}$,
and that (i) and (ii) uniquely characterize x_{1} modulo m^{2}.
(b) Use part (a) to compute a cube-root of 9 in the ring \mathbb{Z}_{10} to 64 digits of 10 -adic precison by working modulo $10,10^{2}, 10^{4}, 10^{8}, 10^{16}, 10^{32}, 10^{64}$.
(c) Prove that Fermat's last theorem is false in \mathbb{Z}_{10}.

Problem 3. Applications of Hensel's lemma (50 points)

Recall that every element of \mathbb{Q}_{p}^{\times}can be uniquely written as $p^{r} u$ with $r \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$. Let $\mathbb{Q}_{p}^{\times n}=\left\{x^{n}: x \in \mathbb{Q}_{p}\right\}$ denote the set of nth powers in \mathbb{Q}_{p}^{\times}.
(a) For all odd primes p, prove that $p^{r} u$ is a square in \mathbb{Q}_{p}^{\times}if and only if r is even and u is a square modulo p. Conclude that $\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times 2} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$ (as finite abelian groups). ${ }^{1}$
(b) Using the strong form of Hensel's lemma, prove that $2^{r} u$ is a square in \mathbb{Q}_{2}^{\times}if and only if r is even and $u \equiv 1 \bmod 8$. Conclude that $\mathbb{Q}_{2}^{\times} / \mathbb{Q}_{2}^{\times 2} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3}$.
(c) Determine the structure of $\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times n}$ for all primes p and odd primes n.

Let $\mu_{n, p}=\left\{x \in \mathbb{Q}_{p}: x^{n}=1\right\}$ denote the set of nth roots of unity in \mathbb{Q}_{p}.
(d) Prove that $\mu_{n, p}$ is a subgroup of \mathbb{Z}_{p}^{\times}.
(e) Use Hensel's lemma to prove that for $p \nmid n$ the group $\mu_{n, p}$ is cyclic of order $\operatorname{gcd}(n, p-1)$.
(f) Let p be odd. Use the strong form of Hensel's lemma to prove that $\mu_{p, p}$ is trivial. Conclude that there are exactly $p-1$ roots of unity in \mathbb{Q}_{p} (be sure to address $\mu_{p^{r}, p}$).
(g) Prove that $\mu_{4,2}=\mu_{2,2}=\{ \pm 1\}$. Conclude that ± 1 are the only roots of unity in \mathbb{Q}_{2}.

Problem 4. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found the problem ($1=$ "trivial," $10=$ "brutal" $)$. Also estimate the amount of time you spent on each problem.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast"), and the novelty of the material ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$10 / 1$	Hensel's lemma				
$10 / 3$	Quadratic forms				

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.

[^0]
[^0]: ${ }^{1}$ Anytime $\mathbb{Z} / p \mathbb{Z}$ (or any ring for that matter) appears in a context where a group is required, you can assume it is the additive group that is being referred to (one uses $(\mathbb{Z} / p \mathbb{Z})^{\times}$for the multiplicative group).

