These problems are related to the material covered in Lectures 22-23. I have made every effort to proof-read them, but some errors may remain. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by the start of class on $12 / 10 / 2013$ and should be submitted electronically as a pdf-file e-mailed to drew@math.mit.edu. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and to identify collaborators and any sources not listed in the syllabus.

As usual, a curve is a smooth projective (irreducible) variety of dimension one.

Problem 1. A genus 1 curve with no rational points (30 points)

Consider the homogeneous polynomial

$$
f(x, y, z)=x^{3}+2 y^{3}+4 z^{3} .
$$

(a) Prove that the zero locus of f is a plane curve C / \mathbb{Q}.
(b) Prove that C has genus one.
(c) Prove that C has no \mathbb{Q}-rational points (so it is not an elliptic curve over \mathbb{Q}).

Problem 2. Hyperelliptic curves (70 points)

A hyperelliptic curve C / k is a curve of genus $g \geq 2$ whose function field is a separable quadratic extension of the rational function field $k(x)$. The non-trivial element of $\operatorname{Gal}(k(C) / k(x))$ is called the hyperelliptic involution. In this problem we consider hyperelliptic curves over a perfect field k whose characteristic is not 2 (so every quadratic extension of $k(x)$ is separable).
(a) Let C / k be a hyperelliptic curve of genus g, Prove that C can be defined by an affine equation of the form $y^{2}=f(x)$, where $f \in k[x]$ is a polynomial of degree $2 g+1$ or $2 g+2$ (so C is the desingularization of the projective closure of this affine variety). (hint: consider the Riemann-Roch spaces $\mathcal{L}(n D)$ where D is the pole divisor of x, and proceed along the lines of the first part of the proof of Theorem 23.3; as a first step, figure out what the degree of D must be).
(b) Prove that the polynomial f in part (a) can be made squarefree, and that $y^{2}-f(x)$ is irreducible in $\bar{k}[x, y]$. Then show that if k is algebraically closed one can make f monic and of degree $2 g+1$.
(c) Let f be any squarefree polynomial in $k[x]$ of degree $d \geq 5$. Prove that the curve defined by $y^{2}=f(x)$ is a hyperelliptic curve of genus $g \leq(d-1) / 2$.
(d) Let C / k be a hyperelliptic curve of genus g defined by $y^{2}=f(x)$ with f squarefree of degree d, where k is algebraically closed. Prove that there are at least d distinct places of $k(C)$ that are fixed by the hyperelliptic involution, but not every place of $k(C)$ is fixed by the hyperelliptic involution.
(e) Let C / k be a function field of genus g over an algebraically closed field k, and let σ be an automorphism of $k(C)$ that fixes k. Prove that if σ does not fix every place of $k(C)$ then it fixes at most $2 g+2$ places. (hint: show that there is a nonconstant function $x \in \mathcal{L}((g+1) P)$, where P is a place not fixed by σ, and then show that every place fixed by σ corresponds to a zero of $\sigma(x)-x)$.
(f) Using (b), (c), and (d), prove that every equation of the form $y^{2}=f(x)$ with $f \in k[x]$ a squarefree polynomial of degree $d \geq 5$ defines a hyperelliptic curve C / k of genus $g=\left\lfloor\frac{d-1}{2}\right\rfloor$. Your proof should work whether or not k is algebraically closed.
(g) Prove that every curve of genus 2 is hyperelliptic (hint: first show there exists an effective canonical divisor W, then consider a non-constant $x \in \mathcal{L}(W)$).

Problem 3. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found the problem ($1=$ "trivial," $10=$ "brutal" $)$. Also estimate the amount of time you spent on each problem.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating") , the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast"), and the novelty of the material ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$11 / 26$	Elliptic curves				
$12 / 3$	Isogenies and torsion points				
$12 / 5$	The Mordell-Weil theorem				

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.

