These problems are related to the material covered in Lectures 21-22. I have made every effort to proof-read them, but some errors may remain. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by the start of class on $12 / 3 / 2013$ and should be submitted electronically as a pdf-file e-mailed to drew@math.mit.edu. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and to identify collaborators and any sources not listed in the syllabus.

Recall that we have defined a curve as a smooth projective variety of dimension one (and varieties are defined to be irreducible algebraic sets).

Problem 1. Bezout's theorem (50 points)

In this problem k is an algebraically closed field.
A curve in \mathbb{P}^{2} is called a plane curve. ${ }^{1}$
(a) Prove that every plane curve X / k is a hypersurface, meaning that its ideal $I(X)$ is of the form (f), where f is a homogeneous polynomial in $k[x, y, z]$. Then show that every generator for $I(X)$ has the same degree.

The degree of $X(\operatorname{denoted} \operatorname{deg} X)$ is the degree of any generator for its homogeneous ideal.
(b) Let F / k be a function field, let P be a place of F, and let $f \in \mathcal{O}_{P}$. Prove that the ring $\mathcal{O}_{P} /(f)$ is a k-vector space of $\operatorname{dimension}^{\operatorname{ord}}{ }_{P}(f)$.

Given a nonconstant homogeneous polynomial $g \in k[x, y, z]$ that is relatively prime to f, we can represent g as an element of the local ring $\mathcal{O}_{X, P}$ of functions in X that are regular at P by picking a homogeneous polynomial h that does not vanish at P and representing g as g / h reduced modulo $I(X)$, an element of $k(X)$. Note that in terms of computing $\operatorname{ord}_{P}(g)$ it makes no difference which h we pick, $\operatorname{ord}_{P}(g)$ will always be equal to the order of vanishing of g at P, a nonnegative integer. We then define the divisor of $g \operatorname{in~}_{\operatorname{Div}}^{k}$ X to be

$$
\operatorname{div}_{X} g=\sum \operatorname{ord}_{P}(g) P
$$

Note that $\operatorname{div}_{X} g$ is not a principal divisor. ${ }^{2}$ Indeed, $\operatorname{deg}^{\operatorname{div}}{ }_{X} g$ is never zero.
(c) Prove that $\operatorname{deg} \operatorname{div}_{X} g$ depends only on $\operatorname{deg} g$ (i.e. $\operatorname{deg} \operatorname{div}_{X} g=\operatorname{deg} \operatorname{div}_{X} h$ whenever g and h have the same degree and are both relatively prime to f). Then prove that $\operatorname{deg} \operatorname{div}_{X} g$ is a linear function of $\operatorname{deg} g$.

Now suppose that g is irreducible and nonsingular, so it defines a plane curve Y / k.
(d) Prove that $\operatorname{deg}_{\operatorname{div}_{Y}} f=\operatorname{deg} \operatorname{div}_{X} g$.

[^0]Definition 1. Let f and g be two nonconstant homogeneous polynomials in $k[x, y, z]$ with no common factor, and let P be a point in \mathbb{P}^{2}. The intersection number of f and g at P is

$$
I_{P}(f, g):=\operatorname{dim}_{k} \mathcal{O}_{\mathbb{P}^{2}, P} /(f, g)
$$

Here $\mathcal{O}_{\mathbb{P}^{2}, P}$ denotes the ring of functions in $k\left(\mathbb{P}^{2}\right)$ that are regular at P, and f and g are represented as elements of this ring by choosing homogeneous denominators of appropriate degree that do not vanish at P, exactly as described above.

As above, let X / k and Y / k denote plane curves defined by relatively prime homogeneous polynomials f and g, and let $I(f, g)=\sum_{P} I_{P}(f, g)$.
(e) Prove that $I(f, g)$ is equal to $\operatorname{deg}_{\operatorname{div}_{X}} g=\operatorname{deg}_{\operatorname{div}_{Y}} f$.
(f) Prove Bezout's Theorem for plane curves:

$$
I(f, g)=\operatorname{deg} f \operatorname{deg} g
$$

In fact Bezout's theorem holds even when f and g are not necessarily irreducible and nonsingular, but you need not prove this. It should be clear that f and g do not need to be irreducible; just factor them and apply the theorem to all pairs of factors. You proof should also handle cases where just one of f or g is singular; it takes a bit more work to handle the case where both f and g are singular and intersect at a common singularity. The assumption that $k=\bar{k}$ is necessary, in general, but the inequality $I(f, g) \leq \operatorname{deg} f \operatorname{deg} g$ always holds.

Problem 2. Derivations and differentials (50 points)

A derivation on a function field F / k is a k-linear map $\delta: F \rightarrow F$ such that

$$
\delta(f g)=\delta(f) g+f \delta(g)
$$

for all $f, g \in F$.
(a) Prove that the following hold for any derivation δ on F / k :
(i) $\delta(c)=0$ for all $c \in k$.
(ii) $\delta\left(f^{n}\right)=n f^{n-1} \delta(f)$ for all $f \in F^{\times}$and $n \in \mathbb{Z}$.
(iii) If k has positive characteristic p then $\delta\left(f^{p}\right)=0$ for all $f \in F$.
(iv) $\delta(f / g)=(\delta(f) g-f \delta(g)) / g^{2}$ for all $f, g \in F$ with $g \neq 0$.

To simplify matters, we henceforth assume that k has characteristic zero. ${ }^{3}$
The simplest example of a derivation is in the case where $F=k(x)$ is the rational function field and $\delta: F \rightarrow F$ is the map defined by $\delta(f)=\partial f / \partial x$. We want to generalize this example to arbitrary function fields.

[^1]Let x be a transcendental element of F / k. Any $y \in F$ is then algebraic over $k(x)$ and has a minimal polynomial $\lambda \in k(x)[T]$. After clearing denominators we can assume that $\lambda \in k[x, T]$. We now formally define

$$
\frac{\partial y}{\partial x}:=-\frac{\partial \lambda / \partial x}{\partial \lambda / \partial T}(y) \in k(x, y) \subseteq F
$$

and let the map $\delta_{x}: F \rightarrow F$ send y to $\partial y / \partial x$.
One can show (but you are not asked to do this) that δ_{x} is a derivation on F / k. Note that we get a derivation δ_{x} for each transcendental x in F. Now let D_{F} be the set of all deriviations on F / k.
(b) Let x be a transcendental element of F / k. Prove that for any $\delta_{1}, \delta_{2} \in \mathrm{D}_{F}$ we have $\delta_{1}(x)=\delta_{2}(x) \Rightarrow \delta_{1}=\delta_{2}$. Conclude that δ_{x} is the unique $\delta \in \mathrm{D}_{F}$ for which $\delta(x)=1$.
(c) Prove the following:
(i) For all $\delta_{1}, \delta_{2} \in \mathrm{D}_{F}$ the map $\left(\delta_{1}+\delta_{2}\right): F \rightarrow F$ defined by $f \mapsto \delta_{1}(f)+\delta_{2}(f)$ is a derivation (hence an element of D_{F}).
(ii) For all $f \in F$ and $\delta \in \mathrm{D}_{F}$ the map $(f \delta): F \rightarrow F$ defined by $g \mapsto f \delta(g)$ is a derivation (hence an element of D_{F}).
(iii) Every $\delta \in \mathrm{D}_{F}$ satisfies $\delta=\delta(x) \delta_{x}$ (in particular, the chain rule $\delta_{y}=\delta_{y}(x) \delta_{x}$ holds for any transcendental $x, y \in F / k)$.

It follows that we may view D_{F} as one-dimensional F-vector space with any δ_{x} as a basis vector. But rather than fixing a particular basis vector; instead, let us define a relation on the set S of pairs (u, x) with $u, x \in F$ and x transcendental over k :

$$
\begin{equation*}
(u, x) \sim(v, y) \Longleftrightarrow v=u \delta_{y}(x) \tag{1}
\end{equation*}
$$

(d) Prove that \sim is an equivalence relation on S.

For each transcendental element $x \in F / k$, let the symbol $d x$ denote the equivalence class of $(1, x)$, and for $u \in F$ define $u d x$ to be the equivalence class of (u, x); we call $d x$ a differential. It follows from part (iii) of (d) that every derivation δ can be uniquely represented as $\delta=u d x$ for some $u \in F$, but now we have the freedom to change representations; we may also write $\delta=v d y$ for any transcendental element y, where $v=u \delta_{y}(x)=u \partial x / \partial y$.
(e) Prove that $d(x+y)=d x+d y$ and $d(x y)=x d y+y d x$ for all transcendental $x, y \in F / k$.

Let us now extend our differential notation to elements of F that are not transcendental over k. Recall that k is algebraically closed in F, so we only need to consider elements of k.
(f) Prove that defining $d a=0$ for all $a \in k$ ensures that (e) holds for all $x, y \in F$, and that no other choice does.

Now momentarily forget everything above and just define Δ_{F} to the F-vector space generated by the set of formal symbols $\{d x: x \in F\}$, subject to the relations

$$
\text { (1) } d(x+y)=d x+d y, \quad \text { (2) } d(x y)=x d y+y d x, \quad \text { (3) } d a=0 \text { for } a \in k \text {. }
$$

Note that x and y denote elements of F (functions), not free variables, so Δ_{F} reflects the structure of F and will be different for different function fields.
(g) Prove that $\operatorname{dim}_{F} \Delta_{F}=1$, and that any $d x$ with $x \notin k$ is a basis.

The set $\Delta=\Delta_{F}$ is often used as an alternative to the set of Weil differentials Ω. They are both one-dimensional F-vector spaces, hence isomorphic (as F-vector spaces). But in order to be useful, we need to associate divisors to differentials in Δ, as we did for Ω.

For any differential $\omega \in \Delta$ and any place P, we may pick a uniformizer t for P and write $\omega=w d t$ for some function $w \in F$ that depends on our choice of t; note that t is necessarily transcendental over k, since it is a uniformizer. We then define $\operatorname{ord}_{P}(\omega):=\operatorname{ord}_{P}(w)$, and the divisor of ω is then given by

$$
\operatorname{div} \omega:=\sum_{P} \operatorname{ord}_{P}(\omega) P
$$

As in Problem 1, the value $\operatorname{ord}_{P}(\omega)$ does not depend on the choice of the uniformizer t.
(h) Prove that $\operatorname{div} u d v=\operatorname{div} u+\operatorname{div} d v$ for any $u, v \in F$. Conclude that the set of nonzero differentials in Δ constitutes a linear equivalence class of divisors.
(i) Let $F=k(t)$ be the rational function field. Compute div $d t$ and prove that it is a canonical divisor. Conclude that a divisor $D \in \operatorname{Div}_{k} C$ is canonical if and only if $D=\operatorname{div} d f$ for some transcendental $f \in F$.

Part (i) holds for arbitrary curves, but you are not asked to prove this. It follows that the space of differentials Δ plays the same role as the space of Weil differentials Ω, and it has the virtue of making explicit computations much easier.
(j) Prove that the curve $x^{2}+y^{2}+z^{2}$ over \mathbb{Q} has genus 0 (even though it is not isomorphic to \mathbb{P}^{1} because it has no rational points) by explicitly computing a canonical divisor.

Problem 3. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found the problem ($1=$ "trivial," $10=$ "brutal" $)$. Also estimate the amount of time you spent on each problem.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast"), and the novelty of the material ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$11 / 19$	Riemann's inequality				
$11 / 21$	The Riemann-Roch theorem				

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.

[^0]: ${ }^{1}$ Plane curves are not usually required to be smooth or irreducible, but ours are.
 ${ }^{2}$ By varying h locally we eliminate the poles that would be present if we fixed a global choice for h.

[^1]: ${ }^{3}$ For those who are interested, the key thing that changes in characteristic $p>0$ is that everywhere we require an element x to be transcendental we need to additionally require it to be a separating element, which means that $F / k(x)$ is a separable extension.

