8.1 Completions of \mathbb{Q}

We already know that \mathbb{R} is the completion of \mathbb{Q} with respect to its archimedean absolute value $\|\left.\right|_{\infty}$. Now we consider the completion of \mathbb{Q} with respect to any of its nonarchimedean absolute values $\left|\left.\right|_{p}\right.$.

Theorem 8.1. The completion $\hat{\mathbb{Q}}$ of \mathbb{Q} with respect to the p-adic absolute value $\left|\left.\right|_{p}\right.$ is isomorphic to \mathbb{Q}_{p}. More precisely, there is an isomorphism $\pi: \mathbb{Q}_{p} \rightarrow \widehat{\mathbb{Q}}$ that satisifies $|\pi(x)|_{p}=|x|_{p}$ for all $x \in \hat{\mathbb{Q}}$.
Proof. For any $x \in \mathbb{Q}_{p}$ either $x \in \mathbb{Z}_{p}$ or $x^{-1} \in \mathbb{Z}_{p}$, since $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$, so to define π it is enough to give a ring homomorphism from \mathbb{Z}_{p} to $\widehat{\mathbb{Q}}$. Let us uniquely represent each $a \in \mathbb{Z}_{p}$ as a sequence of integers $\left(a_{n}\right)$ with $a_{n} \in\left[0, p^{n}-1\right]$, such that $a_{n+1} \equiv a_{n} \bmod \mathbb{Z} / p^{n} \mathbb{Z}$. For any $\epsilon>0$ there is an integer N such that $p^{-N}<\epsilon$, and we then have $\left|a_{m}-a_{n}\right|_{p}<\epsilon$ for all $m, n \geq N$. Thus each $a \in \mathbb{Z}_{p}$ corresponds to a sequence of integers $\left(a_{n}\right)$ that is Cauchy with respect to the p-adic absolute value on \mathbb{Q} and we define $\pi(a)$ to be the equivalence class of $\left(a_{n}\right)$ in $\widehat{\mathbb{Q}}$. It follows immediately from the definition of addition and multiplication in both \mathbb{Z}_{p} and $\hat{\mathbb{Q}}$ as element-wise operations on representative sequences that π is a ring homomorphism from \mathbb{Z}_{p} to $\hat{\mathbb{Q}}$. Moreover, π preserves the absolute value $\left|\left.\right|_{p}\right.$, since

$$
|a|_{p}=\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=|\pi(a)|_{p} .
$$

Here the first equality follows from the fact that if $v_{p}(a)=m$, then $a_{n}=0$ for $n \leq m$ and $v_{p}\left(a_{n}\right)=m$ for all $n>m$ (so the sequence $\left|a_{n}\right|_{p}$ eventually constant), and the second equality is the definition of $\left|\left.\right|_{p}\right.$ on $\hat{\mathbb{Q}}$.

We now extend π from \mathbb{Z}_{p} to \mathbb{Q}_{p} by defining $\pi\left(x^{-1}\right)=\pi(x)^{-1}$ for all $x \in \mathbb{Z}_{p}$ (this is necessarily consistent with our definition of π on \mathbb{Z}_{p}^{\times}, since π is a ring homomorphism). As a ring homomorphism of fields, $\pi: \mathbb{Q}_{p} \rightarrow \widehat{\mathbb{Q}}$ must be injective, so we have an embedding of \mathbb{Q}_{p} into $\hat{\mathbb{Q}}$. To show this it is an isomorphism, it suffices to show that \mathbb{Q}_{p} is complete, since then we can embed $\hat{\mathbb{Q}}$ into \mathbb{Q}_{p}, by Corollary 7.17.

So let $\left(x_{n}\right)$ be a Cauchy sequence in \mathbb{Q}_{p}. Then $\left(x_{n}\right)$ is bounded (fix $\epsilon>0$, pick N so that $\left|x_{n}-x_{N}\right|_{p}<\epsilon$ for all $n \geq N$ and note that $\left.\left|x_{n}\right|_{p} \leq \max _{n \leq N}\left(\left|x_{n}\right|_{p}\right)+\epsilon\right)$. Thus for some fixed power p^{r} of p the sequence $\left(y_{n}\right)=\left(p^{r} x_{n}\right)$ lies in \mathbb{Z}_{p}. We now define $a \in \mathbb{Z}_{p}$ as a sequence of integers $\left(a_{1}, a_{2}, \ldots\right)$ with $a_{i} \in\left[0, p^{i}-1\right]$ and $a_{i+1} \equiv a_{i} \bmod \mathbb{Z} / p^{i} \mathbb{Z}$ as follows. For each integer $i \geq 1$ pick N so that $\left|y_{n}-y_{N}\right|<p^{-i}$ for all $n \geq N$. Then $v_{p}\left(y_{n}-y_{N}\right) \geq i$, and we let a_{i} be the unique integer in $\left[0, p^{i}-1\right]$ for which $y_{n} \equiv a_{i} \bmod \mathbb{Z} / p^{i} \mathbb{Z}$ for all $n \geq N$. We necessarily have $a_{i+1} \equiv a_{i} \bmod p^{i}$, so this defines an element a of \mathbb{Z}_{p}, and by construction (y_{n}) converges to a and therefore (x_{n}) converges to a / p^{r}. Thus every Cauchy sequence in \mathbb{Q}_{p} converges, so \mathbb{Q}_{p} is complete.

It follows from Theorem 8.1 that we could have defined \mathbb{Q}_{p} as the completion of \mathbb{Q}, rather than as the fraction field of \mathbb{Z}_{p}, and many texts do exactly this. If we had taken this approach we would then define \mathbb{Z}_{p} as the the ring of integers of \mathbb{Q}_{p}, that is, the ring

$$
\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}
$$

Alternatively, we could define \mathbb{Z}_{p} as the completion of \mathbb{Z} with respect to $\left|\left.\right|_{p}\right.$.

Remark 8.2. The use of the term "ring of integers" in the context of a p-adic field can be slightly confusing. The ring \mathbb{Z}_{p} is the topological closure of \mathbb{Z} in \mathbb{Q}_{p} (in other words, the completion of \mathbb{Z}), but it is not the integral closure of \mathbb{Z} in \mathbb{Q}_{p} (the elements in \mathbb{Q}_{p} that are roots of a monic polynomial with coefficients in \mathbb{Z}). The latter set is countable, since there are only countably many polynomials with integer coefficients, but we know that \mathbb{Z}_{p} is uncountable. But it is true that \mathbb{Z}_{p} is integrally closed in \mathbb{Q}_{p}, every element of \mathbb{Q}_{p} that is the root of a monic polynomial with coefficients in \mathbb{Z}_{p} lies in \mathbb{Z}_{p}, so \mathbb{Z}_{p} certainly contains the integral closure of \mathbb{Z} in \mathbb{Q}_{p} (and is the completion of the integral closure).

8.2 Root-finding in p-adic fields

We now turn to the problem of finding roots of polynomials in $\mathbb{Z}_{p}[x]$. From Lecture 3 we already know how to find roots of polynomials in $(\mathbb{Z} / p \mathbb{Z})[x] \simeq \mathbb{F}_{p}[x]$. Our goal is to reduce the problem of root-finding over \mathbb{Z}_{p} to root-finding over \mathbb{F}_{p}. To take the first step toward this goal we require the following compactness lemma.

Lemma 8.3. Let $\left(S_{n}\right)$ be an inverse system of finite non-empty sets with a compatible system of maps $f_{n}: S_{n+1} \rightarrow S_{n}$. The inverse limit $S=\varliminf_{\longleftarrow} S_{n}$ is non-empty.
Proof. If the f_{n} are all surjective, we can easily construct an element $\left(s_{n}\right)$ of S : pick any $s_{1} \in S_{1}$ and for $n \geq 1$ pick any $s_{n+1} \in f_{n}^{-1}\left(s_{n}\right)$. So our goal is to reduce to this case.

Let $T_{n, n}=S_{n}$ and for $m>n$, let $T_{m, n}$ be the image of S_{m} in S_{n}, that is

$$
T_{m, n}=f_{n}\left(f_{n+1}\left(\cdots f_{m-1}\left(S_{m}\right) \cdots\right)\right)
$$

For each n we then have an infinite sequence of inclusions

$$
\cdots \subseteq T_{m, n} \subseteq T_{m-1, n} \subseteq \cdots \subseteq T_{n+1, n} \subseteq T_{n, n}=S_{n}
$$

The $T_{m, n}$ are all finite non-empty sets, and it follows that all but finitely many of these inclusions are equalities. Thus each infinite intersection $E_{n}=\bigcap_{m} T_{m, n}$ is a non-empty subset of S_{n}. Using the restriction of f_{n} to define a map $E_{n+1} \rightarrow E_{n}$, we obtain an inverse $\operatorname{system}\left(E_{n}\right)$ of finite non-empty sets whose maps are all surjective, as desired.

Theorem 8.4. For any $f \in \mathbb{Z}_{p}[x]$ the following are equivalent:
(a) f has a root in \mathbb{Z}_{p}.
(b) $f \bmod p^{n}$ has a root in $\mathbb{Z} / p^{n} \mathbb{Z}$ for all $n \geq 1$.

Proof. $(a) \Rightarrow(b)$: apply the projection maps $\mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ to the roots and coefficients of f. $(b) \Rightarrow(a)$: let S_{n} be the roots of f in $\mathbb{Z} / p^{n} \mathbb{Z}$ and consider the inverse system $\left(S_{n}\right)$ of finite non-empty sets whose maps are the restrictions of the reduction maps from $\mathbb{Z} / p^{n+1} \mathbb{Z}$ to $\mathbb{Z} / p^{n} \mathbb{Z}$. By Lemma 8.3, the set $S=\lim _{\leftrightarrows} S_{n} \subseteq \lim _{\leftrightarrows} \mathbb{Z} / p^{n} \mathbb{Z}=\mathbb{Z}_{p}$ is non-empty, and its elements are roots of f.

Theorem 8.4 reduces the problem of finding the roots of f in \mathbb{Z}_{p} to the problem of finding roots of f modulo infinitely many powers of p. This might not seem like progress, but we will now show that under suitable conditions, once we have a root a_{1} of $f \bmod p$, we can "lift" a_{1} to a root a_{n} of $f \bmod p^{n}$, for each $n \geq 1$, and hence to a root of f in \mathbb{Z}_{p}.

A key tool in doing this is the Taylor expansion of f, which we now define in the general setting of a commutative ring R. ${ }^{1}$

[^0]Definition 8.5. Let $f \in R[x]$ be a polynomial of degree at most d and let $a \in R$. The (degree d) Taylor expansion of f about a is

$$
f(x)=f_{d}(x-a)^{d}+f_{d-1}(x-a)^{d-1}+\cdots+f_{1}(x-a)+f_{0}
$$

with $f_{0}, f_{1}, \ldots, f_{d} \in R$.
The Taylor coefficients $f_{0}, f_{1}, \ldots, f_{d}$ are uniquely determined by the expansion of $f(y+z)$ in $R[y, z]$:

$$
f(y+z)=f_{d}(y) z^{d}+f_{d-1}(y) z^{d-1}+\cdots+f_{1}(y) z+f_{0}(y)
$$

Replacing y with a and z with $x-a$ yields the Taylor expansion of f with $f_{i}=f_{i}(a) \in R$.
This definition of the Taylor expansion agrees with the usual definition over \mathbb{R} or \mathbb{C} in terms of the derivatives of f.

Definition 8.6. Let $f(x)=\sum_{n=0}^{d} a_{n} x^{n}$ be a polynomial in $R[x]$. The formal derivative f^{\prime} of f is the polynomial $f^{\prime}(x)=\sum_{n=1}^{d} n a_{n} x^{n-1}$ in $R[x]$.

It is easy to check that the formal derivative satisfies the usual properties

$$
\begin{aligned}
(f+g)^{\prime} & =f^{\prime}+g^{\prime}, \\
(f g)^{\prime} & =f^{\prime} g+f g^{\prime}, \\
(f \circ g)^{\prime} & =\left(f^{\prime} \circ g\right) g^{\prime} .
\end{aligned}
$$

Over a field of characteristic zero one then has the more familiar form of the Taylor expansion

$$
f(x)=\frac{f^{(d)}(a)}{d!}(x-a)^{d}+\cdots+\frac{f^{(2)}(a)}{2}(x-a)^{2}+f^{\prime}(a)(x-a)+f(a),
$$

where $f^{(n)}$ denotes the result of taking n successive derivatives $\left(f^{(n)}(a)\right.$ is necessarily divisible by n !, so the coefficients lie in R). Regardless of the characteristic, the Taylor coefficients f_{0} and f_{1} always satisfy $f_{0}=f(a)$ and $f_{1}=f^{\prime}(a)$.

Lemma 8.7. Let $a \in R$ and $f \in R[x]$. Then $f(a)=f^{\prime}(a)=0$ if and only if a is (at least) a double root of f, that is, $f(x)=(x-a)^{2} g(x)$ for some $g \in R[x]$.

Proof. The reverse implication is clear: if $f(x)=(x-a)^{2} g(x)$ then clearly $f(a)=0$, and we have $f^{\prime}(x)=2(x-a) g(x)+(x-a)^{2} g^{\prime}(x)$, so $f^{\prime}(a)=0$ as well. For the forward implication, let $d=\max (\operatorname{deg} f, 2)$ and consider the degree d Taylor expansion of f about a :

$$
f(x)=f_{d}(x-a)^{d}+f_{d-1}(x-a)^{d-1}+\cdots+f_{2}(x-a)^{2}+f_{1}(x)(x-a)+f_{0} .
$$

If $f(a)=f^{\prime}(a)=0$ then $f_{0}=f(a)=0$ and $f_{1}=f^{\prime}(a)=0$ and we can put

$$
f(x)=(x-a)^{2}\left(f_{d}(x-a)^{d-2}+f_{d-2}(x-a)^{d-3}+\cdots+f_{2}\right),
$$

in the desired form.

8.3 Hensel's lemma

We are now ready to prove Hensel's lemma, which allows us to lift any simple root of $f \bmod p$ to a root of f in \mathbb{Z}_{p}.
Theorem 8.8 (Hensel's lemma). Let $a \in \mathbb{Z}_{p}$ and $f \in \mathbb{Z}_{p}[x]$. Suppose $f(a) \equiv 0 \bmod p$ and $f^{\prime}(a) \not \equiv 0 \bmod p$. Then there is a unique $b \in \mathbb{Z}_{p}$ such that $f(b)=0$ and $b \equiv a \bmod p$.

Our strategy for proving Hensel's lemma is to apply Newton's method, regarding a as an approximate root of f that we can iteratively improve. Remarkably, unlike the situation over an archimedean field like \mathbb{R} or \mathbb{C}, this is guaranteed to always work.

Proof. Let $a_{1}=a$, and for $n \geq 1$ define

$$
a_{n+1}=a_{n}-f\left(a_{n}\right) / f^{\prime}\left(a_{n}\right) .
$$

We will prove by induction on n that the following hold

$$
\begin{gather*}
f^{\prime}\left(a_{n}\right) \equiv 0 \bmod p, \tag{1}\\
f\left(a_{n}\right) \equiv 0 \bmod p^{n}, \tag{2}
\end{gather*}
$$

Note that (1) ensures that $f^{\prime}\left(a_{n}\right) \in \mathbb{Z}_{p}^{\times}$, so a_{n+1} is well defined and an element of \mathbb{Z}_{p}. Together with the definition of $a_{n+1},(1)$ and (2) imply $a_{n+1} \equiv a_{n} \bmod p^{n}$, which means that the sequence $\left(a_{n} \bmod p^{n}\right)$ defines an element of $b \in \mathbb{Z}_{p}$ for which $f(b)=0$ and $b \equiv a_{1} \equiv a$ modulo p (equivalently, the sequence $\left(a_{n}\right)$ is a Cauchy sequence in \mathbb{Z}_{p} with limit b).

The base case $n=1$ is clear, so assume (1) and (2) hold for a_{n}. Then $a_{n+1} \equiv a_{n} \bmod p^{n}$, so $f^{\prime}\left(a_{n+1}\right) \equiv f^{\prime}\left(a_{n}\right) \bmod p^{n}$. Reducing $\bmod p$ gives $f^{\prime}\left(a_{n+1}\right) \equiv f^{\prime}\left(a_{n}\right) \not \equiv 0 \bmod p$. So (1) holds for a_{n+1}. To show (2), let $d=\max (\operatorname{deg} f, 2)$ and consider the Taylor expansion of f about a_{n} :

$$
f(x)=f_{d}\left(x-a_{n}\right)^{d}+f_{d-1}\left(x-a_{n}\right)^{d-1}+\cdots+f_{1}\left(x-a_{n}\right)+f_{0} .
$$

Reversing the order of the terms and noting that $f_{0}=f\left(a_{n}\right)$ and $f_{1}=f^{\prime}\left(a_{n}\right)$ we can write

$$
f(x)=f\left(a_{n}\right)+f^{\prime}\left(a_{n}\right)\left(x-a_{n}\right)+\left(x-a_{n}\right)^{2} g(x),
$$

for some $g \in \mathbb{Z}_{p}[x]$. Substituting a_{n+1} for x yields

$$
f\left(a_{n+1}\right)=f\left(a_{n}\right)+f^{\prime}\left(a_{n}\right)\left(a_{n+1}-a_{n}\right)+\left(a_{n+1}-a_{n}\right)^{2} g\left(a_{n+1}\right) .
$$

From the definition of a_{n+1} we have $f^{\prime}\left(a_{n}\right)\left(a_{n+1}-a_{n}\right)=-f\left(a_{n}\right)$, thus

$$
f\left(a_{n+1}\right)=\left(a_{n+1}-a_{n}\right)^{2} g\left(a_{n+1}\right) .
$$

As noted above, $a_{n+1} \equiv a_{n} \bmod p^{n}$, so $f\left(a_{n+1}\right) \equiv 0 \bmod p^{2 n}$. Since $2 n \geq n+1$, we have $f\left(a_{n+1}\right) \equiv 0 \bmod p^{n+1}$, so (2) holds for a_{n+1}.

For uniqueness we argue that each a_{n+1} (and therefore b) is congruent modulo p^{n+1} to the unique root of $f \bmod p^{n+1}$ that is congruent to $a_{n} \bmod p^{n}$. There can be only one such root because a_{n} is a simple root of $f \bmod p^{n}$, since (1) implies $f^{\prime}\left(a_{n}\right) \not \equiv 0 \bmod p^{n}$.

There are stronger version of Hensel's lemma than we have given here. In particular, the hypothesis $f^{\prime}(a) \not \equiv 0 \bmod p$ can be weakened so that the lemma can be applied even in situations where a is not a simple root. Additionally, the sequence (a_{n}) actualy converges to a root of f more rapidly than indicated by inductive hypothesis (2). You will prove stronger and more effective versions of Hensel's lemma on the problem set, as well as exploring several applications.

[^0]: ${ }^{1}$ As always, our rings include a multiplicative identity 1.

